面向3D打印的钛合金点阵接骨板设计及其仿真
收稿日期: 2019-07-08
网络出版日期: 2021-03-03
基金资助
国家自然科学基金(51379025)
Design and Simulation of a Titanium Alloy Lattice Bone Plate for 3D Printing
Received date: 2019-07-08
Online published: 2021-03-03
为了改善骨折愈合过程中因金属接骨板弹性模量过大引起的应力屏蔽效应问题,基于拓扑优化与有限元建模技术设计一种面向3D打印的点阵结构接骨板.以钛合金胫骨接骨板为例,建立简化有限元模型,结合有限元法及数据采样方法,分别对实体接骨板系统和点阵接骨板系统进行仿真,并对比其力学性能上的异同点.基于点阵接骨板系统的力学性能分析,实现接骨板的轻量化设计,改善骨骼应力屏蔽效应.计算结果表明:在保证强度的情况下,点阵结构的接骨板设计可减小40%左右的接骨板质量;点阵接骨板对厚度较为敏感,通过小范围减小接骨板的厚度,可明显降低接骨板刚度;点阵接骨板的应用可以有效提高4%左右的骨骼平均应力,减小骨骼的应力屏蔽效应.仿真分析结果可为低应力屏蔽接骨板的设计提供一定的参考依据.
张聪, 贾德君, 李范春, 徐一通, 张源 . 面向3D打印的钛合金点阵接骨板设计及其仿真[J]. 上海交通大学学报, 2021 , 55(2) : 170 -178 . DOI: 10.16183/j.cnki.jsjtu.2019.196
In order to improve the stress shielding effect caused by excessive elastic modulus of metal plates during fracture healing, a kind of 3D printing oriented lattice structure plate is designed based on topology optimization and the finite element modeling technology. A simplified finite element model of the titanium alloy tibial plate is established by using the finite element method. Combined with the finite element method and the data sampling method, the solid plate system and the lattice plate system are simulated, and the similarities and differences between their performances are compared. Based on the analysis of mechanical properties of lattice plate system, the lightweight design of the plate is realized and the stress shielding effect of the bone is improved. The results show that the weight of the lattice plate can be reduced by about 40% under the condition of guaranteed strength. The lattice plate is sensitive to the thickness. By reducing the thickness of the plate in a small range, the stiffness of the plate can be significantly reduced. The application of the lattice plate can effectively increase the average stress of the skeleton by about 4% and reduce the stress shielding effect of the skeleton. The simulated analysis results can provide references for the optimization design of low stress shielded plates.
[1] | 何坤金,张翔,陆丰威,等. 基于模板映射的个性化接骨板快速设计[J]. 计算机集成制造系统,2019, 25(1): 190-196. |
[1] | HE Kunjin, ZHANG Xiang, LU Fengwei, et al. Quick design of personalized bone plate based on template mapping[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 190-196. |
[2] | 王明,宋西平. 医用钛合金腐蚀、力学相容性和生物相容性研究现状[J]. 钛工业进展,2008, 25(2): 13-18. |
[2] | WANG Ming, SONG Xiping. Study actuality of corrosion, mechanical compatibility and biocompatibility of titanium alloys for medical application[J]. Titanium Industry Progress, 2008, 25(2): 13-18. |
[3] | 戴尅戎. 骨折内固定与应力遮挡效应[J]. 医用生物力学,2000, 15(2): 69-71. |
[3] | DAI Kerong. Fracture internal fixation and stress shielding effect[J]. Journal of Medical Biomechanics, 2000, 15(2): 69-71. |
[4] | 赵德伟,李军雷. 多孔Ta的制备及其作为骨植入材料的应用进展[J]. 金属学报,2017, 53(10): 1303-1310. |
[4] | ZHAO Dewei, LI Junlei. Fabrication of the porous tantalum and its current status used as orthopedics implants materials[J]. Acta Metallurgica Sinica, 2017, 53(10): 1303-1310. |
[5] | LI X, LUO Y, WANG C T, et al. Fabrication and in vivo evaluation of Ti6Al4V implants with controlled porous structure and complex shape[J]. Frontiers of Mechanical Engineering, 2012, 7(1): 66-71. |
[6] | 梁豪君,李瑞延,刘贯聪,等. 医用骨科假体植入物多孔结构设计的研究和临床应用现状[J]. 中国组织工程研究,2017, 21(15): 2410-2417. |
[6] | LIANG Haojun, LI Ruiyan, LIU Guancong, et al. Design of the porous orthopedic implants: Research and application status[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(15): 2410-2417. |
[7] | POBLOTH A M, CHECA S, RAZI H, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep[J]. Science Translational Medicine, 2018, 10(423): 1-16. |
[8] | CHEN W M, XIE Y M, IMBALZANO G, et al. Lattice Ti structures with low rigidity but compatible mechanical strength: Design of implant materials for trabecular bone[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(6): 793-799. |
[9] | WANG L, KANG J F, SUN C N, et al. Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants[J]. Materials & Design, 2017, 133: 62-68. |
[10] | SATAPATHY P K, SAHOO B, PANDA L N, et al. Finite element analysis of functionally graded bone plate at femur bone fracture site[J]. IOP Conference Series: Materials Science and Engineering, 2018, 330: 012027. |
[11] | 顾立强. 胫骨平台骨折的分类与功能评价[J]. 中华创伤骨科杂志,2004, 6(3): 323-327. |
[11] | GU Liqiang. Classification and functional assessment of the tibial plateau fractures[J]. Chinese Journal of Orthopaedic Trauma, 2004, 6(3): 323-327. |
[12] | 郭新路,刘蓉,王永轩. 仿骨小梁力学性能的多孔结构拓扑优化设计[J]. 医用生物力学,2018, 33(5): 402-409. |
[12] | GUO Xinlu, LIU Rong, WANG Yongxuan. Topology optimization of bionic porous structure based on biomechanical properties of trabecular bone[J]. Journal of Medical Biomechanics, 2018, 33(5): 402-409. |
[13] | 吴乃超,韩青,时景伟,等. 拓扑优化技术在医用金属植入物方面的研究进展[J]. 中华实验外科杂志,2018, 35(10): 1984-1986. |
[13] | WU Naichao, HAN Qing, SHI Jingwei, et al. The advances of topology optimization techniques in medical metallic implants[J]. Chinese Journal of Experimental Surgery, 2018, 35(10): 1984-1986. |
[14] | 张二林,王晓燕,憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报,2017, 53(12): 1555-1567. |
[14] | ZHANG Erlin, WANG Xiaoyan, HAN Yong. Research status of biomedical porous Ti and its alloy in China[J]. Acta Metallurgica Sinica, 2017, 53(12): 1555-1567. |
[15] | KIM J D, KIM N S, HONG C S, et al. Design optimization of a xenogeneic bone plate and screws using the Taguchi and finite element methods[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(6): 1119-1124. |
[16] | 黄明茂. CF/PEEK骨板的弯曲性能测试和对骨折愈合过程的有限元模拟[D]. 西安: 西北工业大学,2006. |
[16] | HUANG Mingmao. Bending performance test of CF/PEEK composite bone plate and its FE simulation in the healing of fracture bone[D]. Xi’an: Northwestern Polytechnical University, 2006. |
[17] | 高亚磊,董黎敏,李炫,等. 钛合金接骨板固定股骨骨折的有限元分析及实验验证[J]. 天津理工大学学报,2014, 30(4): 6-9. |
[17] | GAO Yalei, DONG Limin, LI Xuan, et al. Finite element analysis and experimental verification of titanium plate fixation for femoral fracture system[J]. Journal of Tianjin University of Technology, 2014, 30(4): 6-9. |
[18] | 余森,于振涛,牛金龙,等. 钛合金植入物与人体组织表面/界面相互作用研究进展[J]. 热加工工艺,2017, 46(22): 18-22. |
[18] | YU Sen, YU Zhentao, NIU Jinlong, et al. Research progress of surface/interface interaction between titanium alloy implants and human tissue[J]. Hot Working Technology, 2017, 46(22): 18-22. |
[19] | 吴利苹,邹善方,刘睿诚,等. 钛及钛合金3D打印医用产品的生物安全性[J]. 中国组织工程研究,2018, 22(34): 5559-5564. |
[19] | WU Liping, ZOU Shanfang, LIU Ruicheng, et al. Bio-safety of 3D printed titanium and titanium alloys for medical application[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(34): 5559-5564. |
/
〈 |
|
〉 |