软体尺蠖爬行机器人建模与仿真分析

展开
  • 上海交通大学 工程力学系,上海  200240
张力文(1997-),男,硕士生,四川省南充市人,研究方向为多体系统动力学.

收稿日期: 2020-02-20

  网络出版日期: 2021-03-03

基金资助

国家自然科学基金(11772186)

Modeling and Simulation of an Inchworm-Like Soft Robot

Expand
  • Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-02-20

  Online published: 2021-03-03

摘要

高效计算并整体分析软体尺蠖机器人的运动规律和行进步态是个具有挑战性的难题.在准静态条件下,建立了一个由刚性滑块和曲梁构成的简化力学模型,对该类机器人进行准静态的建模与仿真分析.首先基于欧拉-伯努利梁理论,给出了曲梁的总势能表达式.其次,利用变分原理,由总势能推导出控制方程,联立边界条件,建立了常微分方程组,并对其进行离散化以及无量纲化,给出了用于数值求解的非线性代数方程组.然后,根据曲梁和地面的接触情况以及系统的黏滞与滑移状况,将机器人的整个运动过程分为三个阶段,通过数值计算,得到在不同阶段下曲梁随初始曲率幅值变化的不同构型,描述出软体机器人在一个周期内的运动规律、步态变化和净位移量,解决了软体机器人在不同阶段的运动衔接问题.准静态方法的特点是计算效率较高,更加适用于对软体机器人的运动构型进行分析.

本文引用格式

张力文, 徐齐平, 刘锦阳 . 软体尺蠖爬行机器人建模与仿真分析[J]. 上海交通大学学报, 2021 , 55(2) : 149 -160 . DOI: 10.16183/j.cnki.jsjtu.2020.047

Abstract

It is a challenging problem to efficiently calculate and systematically analyze the motion laws and working gait of the inchworm-like soft robot. A simple mechanical model consisting of a rigid slider and a curved beam is established under quasi-static conditions, in order to realize quasi-static modeling and simulation analysis of the inchworm-like soft robot. First, based on the Euler-Bernoulli beam theory, the total potential energy expression of the beam is obtained. Next, combining the boundary conditions and the governing equation derived from the total potential energy based on the variational principle, a set of ordinary differential equations are established. Then, through discretization and dimensionlessness of those equations, a class of nonlinear algebraic equations for numerical solution is proposed. Finally, in the light of the contact situation between curved beam and ground as well as the viscous and slip condition of the system, the motion of the robot is divided into three stages. Through numerical calculations, the different configurations of the curved beam in different stages with the change of the initial curvature amplitude are obtained, which makes it possible to describe the law, the gait, and the net displacement of the soft robot in a motion cycle and solve the problem of movement connection of soft robots at different stages. The quasi-static method is characterized by high computational efficiency, which is more suitable for analyzing the motion configuration of soft robots.

参考文献

[1] 胡兵兵,金国庆. 一种仿虎甲幼虫的多驱动器软体机器人的设计与制造[J]. 机器人,2018, 40(5): 52-59.
[1] HU Bingbing, JIN Guoqing. Design and fabrication of a multi-actuator soft robot inspired by young tiger beetle[J]. Robot, 2018, 40(5): 52-59.
[2] 费燕琼,吕海洋,沈星尧. 模块化软体机器人运动模式[J]. 上海交通大学学报,2013, 47(12): 1870-1873.
[2] FEI Yanqiong, LV Haiyang, SHEN Xingyao. Moving mode of modular soft robot[J]. Journal of Shanghai Jiao Tong University, 2013, 47(12): 1870-1873.
[3] 张润玺,王贺升,陈卫东. 仿章鱼软体机器人形状控制[J]. 机器人,2016, 38(6): 754-759.
[3] ZHANG Runxi, WANG Hesheng, CHEN Weidong. Shape control for a soft robot inspired by octopus[J]. Robot, 2016, 38(6): 754-759.
[4] LI C, XIE Y, HUANG X, et al. Novel dielectric elastomer structure of soft robot[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2015, 9430: 943021.
[5] RAFSANJANI A, ZHANG Y, LIU B, et al. Kirigami skins make a simple soft actuator crawl[J]. Science Robotics, 2018, 3(15): 7555.
[6] 邵城. 环纵肌复合的气动仿蠕虫软体机器人技术研究[D]. 南京: 南京理工大学,2018.
[6] SHAO Cheng. Development of the pneumatic-driven earthworm-like soft robot with circular-longitudinal compound muscles[D]. Nanjing: Nanjing University of Science and Technology, 2018.
[7] SUZUMORI K, ENDO S, KANDA T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]∥Proceedings 2007 IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 4975-4980.
[8] MAO S X, DONG E B, JIN H, et al. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs[J]. Journal of Bionic Engineering, 2014, 11(3): 400-411.
[9] BARTLETT N W, TOLLEY M T, OVERVELDE J T B, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244): 161-165.
[10] CIANCHETTI M, CALISTI M, MARGHERI L, et al. Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot[J]. Bioinspiration & Biomimetics, 2015, 10(3): 035003.
[11] MARCHESE A D, ONAL C D, RUS D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1): 75-87.
[12] LIN H T, LEISK G G, TRIMMER B. GoQBot: A caterpillar-inspired soft-bodied rolling robot[J]. Bioinspiration & Biomimetics, 2011, 6(2): 026007.
[13] JUNG K, KOO J C, NAM J D, et al. Artificial annelid robot driven by soft actuators[J]. Bioinspiration & Biomimetics, 2007, 2(2): S42-S49.
[14] 王江北,方晔阳,童歆,等. 多气囊仿生软体机器人设计及其运动特性分析[J]. 上海交通大学学报,2018, 52(1): 20-25.
[14] WANG Jiangbei, FANG Yeyang, TONG Xin, et al. Design and locomotion properties of a multi-airbag bionic soft robot[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 20-25.
[15] SHEPHERD R F, ILIEVSKI F, CHOI W, et al. Multigait soft robot[J]. PNAS, 2011, 108(51): 20400-20403.
[16] TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3): 213-223.
[17] MAJIDI C, O’REILLY O M, WILLIAMS J A. On the stability of a rod adhering to a rigid surface: Shear-induced stable adhesion and the instability of peeling[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(5): 827-843.
[18] MAJIDI C, O’REILLY O M, WILLIAMS J A. Bifurcations and instability in the adhesion of intrinsically curved rods[J]. Mechanics Research Communications, 2013, 49: 13-16.
[19] MAJIDI C, SHEPHERD R F, KRAMER R K, et al. Influence of surface traction on soft robot undulation[J]. The International Journal of Robotics Research, 2013, 32(13): 1577-1584.
[20] ZHOU X C, MAJIDI C, O’REILLY O M. Flexing into motion: A locomotion mechanism for soft robots[J]. International Journal of Non-Linear Mechanics, 2015, 74: 7-17.
[21] DE PAYREBRUNE K M, O’REILLY O M. On constitutive relations for a rod-based model of a pneu-net bending actuator[J]. Extreme Mechanics Letters, 2016, 8: 38-46.
[22] MATIA Y, GAT A D. Dynamics of elastic beams with embedded fluid-filled parallel-channel networks[J]. Soft Robotics, 2015, 2(1): 42-47.
[23] POLYGERINOS P, LYNE S, WANG Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2013: 1512-1517.
文章导航

/