粗糙底床对持续入流式异重流掺混和湍流特性的影响

展开
  • 浙江大学 海洋学院,浙江  舟山  316021
韩东睿(1994-),男,山东省淄博市人,博士生,研究方向为异重流运动特性的实验室模拟.

收稿日期: 2019-04-23

  网络出版日期: 2021-01-19

基金资助

国家重点研发计划(2017YFC0405205);浙江省基础公益研究计划(LY20A020009);舟山市科技计划项目浙江大学海洋学院专项(2018C81034);中央高校基本科研业务费专项(K20200210)

Entrainment and Turbulence Characteristics of Continuous-Flux Release Gravity Current over Rough Beds

Expand
  • Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China

Received date: 2019-04-23

  Online published: 2021-01-19

摘要

在自然环境和水利工程中,异重流现象广泛存在.现实工况中,大多数底床覆盖砾石及不同粒径大小的泥沙颗粒,可视为粗糙底床,因此研究异重流流过粗糙底床的动力学特性具有实际科学意义及工程应用价值.本文利用持续入流式异重流水槽试验,综合考虑底床粗糙度和异重流初始质量分数,分析异重流头部位置、头部速度、掺混系数等扩散特性,不同断面的湍流强度及雷诺应力等湍流特性,结合雷诺应力法和湍动能法计算底床剪应力.结果表明: 异重流头部速度与底床粗糙度呈负相关,与初始质量分数呈正相关;在高粗糙度、高初始质量分数工况时,底床粗糙度是控制其运动特性的主要因素;当粗糙度增加到一定程度时,异重流纵向时均流速剖面(沿水深分布)的峰值点出现“爬升现象”;湍流强度剖面(沿水深分布)出现一个极小值及两个极大值,其中纵向湍流强度是异重流湍流结构的主导,粗糙底床上的垂向湍流强度相比于光滑底床增加幅度明显;靠近底床附近,雷诺切应力为正值,远离底床区域,雷诺切应力为负值;利用湍动能法计算的底床剪应力均小于同粗糙度下的雷诺应力法;在总体理查森数相同情况下,异重流掺混系数与底床粗糙度呈正相关.最后总结出粗糙底床对异重流的主要影响为:摩阻力增加、掺混作用强化、近底床区域密度重分布、湍流边界层变厚及纵向时均流速剖面峰值点“爬升现象”的出现.

本文引用格式

韩东睿, 余俊杨, 袁野平, 贺治国, 王雨杭, 林颖典 . 粗糙底床对持续入流式异重流掺混和湍流特性的影响[J]. 上海交通大学学报, 2021 , 55(1) : 77 -87 . DOI: 10.16183/j.cnki.jsjtu.2019.110

Abstract

In both the natural environment and hydraulic engineering, there widely exists the phenomenon of gravity current. In practical conditions, most beds are covered with gravel and sediment particles of different sizes, which can be regarded as rough bed conditions. Therefore, it is of practical scientific significance and engineering application value to study the dynamic characteristics of gravity current flowing over rough beds. By conducting flume experiments for continuous-flux gravity current, and considering the bed roughness and the current initial mass fraction comprehensively, the propagation characteristics such as head position, head velocity, and entrainment coefficient of gravity current are analyzed, the turbulence characteristics such as the turbulence intensity and Reynolds stress at different cross-sections are studied, and the bed shear stress is calculated by using the Reynolds stress method and the turbulent kinetic energy method. The results show that the velocity of the gravity current head is negatively correlated with the bed roughness, but positively correlated with the current initial mass fraction. In the experimental runs of conspicuous roughness and high initial mass fraction, the former is the dominant factor for the kinematic characteristics of gravity currents. When the bed roughness increases to a certain extent, the "lifting phenomenon" of the averaged longitudinal velocity profiles occurs in the gravity current body. One minimum and two maximun values are presented in the turbulence intensity profile of gravity current, and the longitudinal turbulence intensity is the main controlling factor for the current turbulent structure. Besides, the vertical turbulence intensity over rough beds increases significantly compared with that of smooth beds. Near the bed, the Reynolds shear stress is positive, whereas far away from the bed, the Reynolds shear stress is negative. The bed shear stress calculated by using the Reynolds stress method is higher than that by using the turbulent kinetic energy method at identical bed roughness. At the same bulk Richardson number, the entrainment coefficient of gravity current is positively correlated with the bed roughness. It can be concluded that the influence of rough beds on gravity current is mainly as follows: increasing friction resistance, reinforcing mixing effect, redistributing current density near the bed, thickening turbulent boundary layer, and "lifting phenomenon" of the averaged longitudinal velocity profiles.

参考文献

[1] SIMPSON J E. Gravity current: In the environment and the laboratory[M]. 2nd ed. New York: Cambridge University Press, 1997.
[2] 唐武,王英民,仲米虹,等. 异重流研究进展综述[J]. 海相油气地质,2016, 21(2): 47-56.
[2] TANG Wu, WANG Yingmin, ZHONG Mihong, et al. Review of hyperpycnal flow[J]. Marine Origin Petroleum Geology, 2016, 21(2): 47-56.
[3] KINEKE G C, WOOLFE K J, KUEHL S A, et al. Sediment export from the Sepik River, Papua New Guinea: Evidence for a divergent sediment plume[J]. Continental Shelf Research, 2000, 20(16): 2239-2266.
[4] 贺治国,林挺,赵亮,等. 异重流在层结与非层结水体中沿斜坡运动的实验研究[J]. 中国科学: 技术科学,2016, 46(6): 570-578.
[4] HE Zhiguo, LIN Ting, ZHAO Liang, et al. Experiments on gravity currents down a ramp in unstratified and linearly stratified salt water environments[J]. Scientia Sinica (Technologica), 2016, 46(6): 570-578.
[5] TESTIK F Y, YILMAZ N A. Anatomy and propagation dynamics of continuous-flux release bottom gravity currents through emergent aquatic vegetation[J]. Physics of Fluids, 2015, 27(5): 056603.
[6] MIDDLETON G V. Experiments on density and turbidity currents: I. Motion of the head[J]. Canadian Journal of Earth Sciences, 1966, 3(4): 523-546.
[7] BRITTER R E, LINDEN P F. The motion of the front of a gravity current travelling down an incline[J]. Journal of Fluid Mechanics, 1980, 99(3): 531-543.
[8] CHOWDHURY M R, TESTIK F Y. Viscous propagation of two-dimensional non-Newtonian gravity currents[J]. Fluid Dynamics Research, 2012, 44(4): 045502.
[9] PETERS W D, DUTCHER C R, VENART J E S. Visualization of gravity current flow using laser-induced dye fluorescence[M]∥Flow visualization VI. Berlin, Heidelberg: Springer, 1992: 46-50.
[10] LA ROCCA M, ADDUCE C, SCIORTINO G, et al. Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom[J]. Physics of Fluids, 2008, 20(10): 106603.
[11] ?ZG?KMEN T M, FISCHER P F. On the role of bottom roughness in overflows[J]. Ocean Modelling, 2008, 20(4): 336-361.
[12] ADDUCE C, LOMBARDI V, SCIORTINO G, et al. Roughness effects on gravity currents dynamics[C]∥33rd IAHR Congress. Vancouver, Canada: IAHR, 2009: 578-585.
[13] NOGUEIRA H I S, ADDUCE C, ALVES E, et al. Analysis of lock-exchange gravity currents over smooth and rough beds[J]. Journal of Hydraulic Research, 2013, 51(4): 417-431.
[14] VARJAVAND P, GHOMESHI M, DALIR A H, et al. Experimental observation of saline underflows and turbidity currents, flowing over rough beds[J]. Canadian Journal of Civil Engineering, 2015, 42(11): 834-844.
[15] OZAN A Y, CONSTANTINESCU G, HOGG A J. Lock-exchange gravity currents propagating in a channel containing an array of obstacles[J]. Journal of Fluid Mechanics, 2015, 765: 544-575.
[16] ZHOU J, CENEDESE C, WILLIAMS T, et al. On the propagation of gravity currents over and through a submerged array of circular cylinders[J]. Journal of Fluid Mechanics, 2017, 831: 394-417.
[17] CENEDESE C, NOKES R, HYATT J. Lock-exchange gravity currents over rough bottoms[J]. Environmental Fluid Mechanics, 2018, 18: 59-73.
[18] ASGHARI P S A, KASHEFIPOUR S M, GHOMESHI M. An experimental study to determine the obstacle height required for the control of subcritical and supercritical gravity currents[J]. European Journal of Environmental and Civil Engineering, 2017, 21(9): 1080-1092.
[19] KASHEFIPOUR S M, DARYAEE M, GHOMESHI M. Effect of bed roughness on velocity profile and water entrainment in a sedimentary density current[J]. Canadian Journal of Civil Engineering, 2018, 45(1): 9-17.
[20] 林颖典,熊杰,刘雅钰,等. 异重流在不同粗糙底床上运动特性的实验研究[J]. 华中科技大学学报(自然科学版), 2019, 47(1): 114-119.
[20] LIN Yingdian, XIONG Jie, LIU Yayu, et al. Experimental study of lock-exchange gravity currents over rough beds[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(1): 114-119.
[21] 肖洋,唐洪武,毛野,等. 新型声学多普勒流速仪及其应用[J]. 河海大学学报(自然科学版), 2002, 30(3): 15-18.
[21] XIAO Yang, TANG Hongwu, MAO Ye, et al. New acoustic-doppler velocimeter (ADV) and its application[J]. Journal of Hohai University (Natural Sciences), 2002, 30(3): 15-18.
[22] SEQUEIROS O E, SPINEWINE B, BEAUBOUEF R T, et al. Characteristics of velocity and excess density profiles of saline underflows and turbidity currents flowing over a mobile bed[J]. Journal of Hydraulic Engineering, 2010, 136(7): 412-433.
[23] 彭明. 开闸式异重流的流动结构和颗粒输运的实验研究[D]. 北京: 北京大学,2013.
[23] PENG Ming. Experimental study on flow structure and particle dispersion of lock-exchange gravity currents[D]. Beijing: Peking University, 2013.
[24] 吴岩. 弯道水流结构及泥沙输移过程研究[D]. 天津: 天津大学,2013.
[24] WU Yan. Study on flow structure and sediment transport processes of the bend river[D]. Tianjin: Tianjin University, 2013.
[25] ABHARI M N, IRANSHAHI M, GHODSIAN M, et al. Experimental study of obstacle effect on sediment transport of turbidity currents[J]. Journal of Hydraulic Research, 2018, 56(5): 618-629.
[26] 董宁澎,李大勇. 水流与壁面间切应力估计方法的比较研究[J]. 水利水电技术,2017, 48(7): 74-78.
[26] DONG Ningpeng, LI Dayong. A comparative study on methods for estimating shear stress between water flow and wall-surface[J]. Water Resources and Hydropower Engineering, 2017, 48(7): 74-78.
[27] TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Cambridge, USA: The MIT Press, 1972.
[28] KIM S C, FRIEDRICHS C T, MAA J P Y, et al. Estimating bottom stress in tidal boundary layer from acoustic doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2000, 126(6): 399-406.
[29] JACOBSON M R, TESTIK F Y. Turbulent entrainment into fluid mud gravity currents[J]. Environmental Fluid Mechanics, 2014, 14(2): 541-563.
[30] MORTON B R, TAYLOR G I, TURNER J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1956, 234(1196): 1-23.
[31] TURNER J S. Buoyancy effects in fluids[M]. Cambridge, UK: Cambridge University Press, 1973.
文章导航

/