有砟客专路基结构参数的优化研究
收稿日期: 2019-08-09
网络出版日期: 2021-01-19
基金资助
国家自然科学基金项目(51908215);江西省自然科学基金项目(20181BAB216030);江西省教育厅科学技术研究项目(GJJ170399);江西省高等学校科技落地计划项目(KJLD14038)
Optimization of Subgrade Structure Parameters of Ballasted Track Passenger Dedicated Line
Received date: 2019-08-09
Online published: 2021-01-19
为了改善有砟铁路路基结构受力状况和降低维修费用,需要研究列车荷载作用下路基结构参数对路基动力响应的影响.采用正交试验设计分析了铁路路基结构动力响应与道床弹性模量、基床表层弹性模量、基床底层弹性模量、道床厚度、基床表层厚度、基床底层厚度以及地基弹性模量等各结构层参数的敏感性关系,并结合层次分析法和线性评价指标确定了有砟铁路路基结构的最优参数组合.结果表明:道床厚度是影响道床动应力、基床表层动应力以及基床表层振动加速度的主要因素;地基的弹性模量是影响轨枕竖向位移的主要因素;确定有砟轨道结构的力学最优参数组合为道床弹性模量250 MPa,基床表层弹性模量120 MPa,基床底层弹性模量115 MPa,道床厚度0.35 m,基床表层厚度1.1 m,基床底层厚度2.3 m,地基弹性模量70 MPa.
王威, 陆思逵, 杨成忠, 冯青松 . 有砟客专路基结构参数的优化研究[J]. 上海交通大学学报, 2021 , 55(1) : 48 -55 . DOI: 10.16183/j.cnki.jsjtu.2019.235
In order to improve the force condition of ballasted railway subgrade structure and reduce maintenance cost, it is necessary to study the influence of subgrade structure parameters on subgrade dynamic response under train load. Orthogonal test was designed and used to analyze the sensitive relationship between dynamic response of railway subgrade structure and parameters of each structural layer, and the optimal parameter combination of subgrade structure of ballasted railway was determined by combining analytic hierarchy process (AHP) and linear evaluation index. The parameters include elastic modulus of ballast bed, elastic modulus of surface and bottom layer of subgrade bed, thickness of ballast bed, thickness of surface and bottom layer of subgrade bed, and elastic modulus of foundation. The results show that the thickness of track bed is the main factor that affects dynamic stress of ballast bed, dynamic stress and vibration acceleration of surface layer of subgrade bed. The elastic modulus of foundation is the main factor that affects the vertical displacement of the sleeper. The mechanical optimum parameter combination of ballast track structure parameters is determined as the elastic modulus ballast bed is 250 MPa, elastic moduli of surface and bottom layer of subgrade bed are 120 MPa and 115 MPa, the thickness of ballast bed is 0.35 m, the thickness of surface and bottom layer of subgrade bed are 1.1 m and 2.3 m, and the elastic modulus of foundation is 70 MPa.
[1] | 梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999, 21(2): 84-88. |
[1] | LIANG Bo, CAI Ying. Dynamic analysis on subgrade of high speed railways in geometric irregular condition[J]. Journal of the China Railway Society, 1999, 21(2): 84-88. |
[2] | HUNG H H, YANG Y B. Elastic waves in visco-elastic half-space generated by various vehicle loads[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(1): 1-17. |
[3] | COSTA P A, CALCADA R, CARDOSO A S, et al. Influence of soil non-linearity on the dynamic response of high-speed railway tracks[J]. Soil Dyna-mics and Earthquake Engineering, 2010, 30(4): 221-235. |
[4] | 孙文静,周劲松,宫岛.基于格林函数法的车辆—轨道垂向耦合系统随机振动分析[J]. 中国铁道科学,2015, 36(1): 61-67. |
[4] | SUN Wenjing, ZHOU Jinsong, GONG Dao. Analysis on random vibration of vehicle-track vertical coupling system with green function method[J]. China Railway Science, 2015, 36(1): 61-67. |
[5] | 孔祥辉,蒋关鲁,李安洪,等.基于三维数值模拟的铁路路基动力特性分析[J]. 西南交通大学学报,2014, 49(3): 406-411. |
[5] | KONG Xianghui, JIANG Guanlu, LI Anhong, et al. Analysis of dynamic characteristics of railway subgrade based on three-dimensional numerical simulation[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 406-411. |
[6] | SHAER A A, DUHAMEL D, SAB K, et al. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains[J]. Journal of Sound and Vibration, 2008, 316(1/2/3/4/5): 211-233. |
[7] | ISHIKAWA T, SEKINE E, MIURA S. Cyclic deformation of granular material subjected to moving-wheel loads [J]. Canadian Geotechnical Journal, 2011, 48(5): 691-703. |
[8] | 常丹,刘建坤,田亚护.Evd, Ev2和K30相关关系的数值分析[J].岩土工程学报,2013, 35(Sup.2): 428-432. |
[8] | CHANG Dan, LIU Jiankun, TIAN Yahu. Numerical analysis of relationship among dynamic deformation modulus Evd, deformation modulus Ev2 and coefficient of soil reaction K30 [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup.2): 428-432. |
[9] | 王亮亮,杨果林,房以河,等.高速铁路膨胀土路堑全封闭基床动力特性现场试验[J].岩土工程学报,2014, 36(4): 640-645. |
[9] | WANG Liangliang, YANG Guolin, FANG Yihe, et al. In-situ tests on dynamic character of fully-enclosed cutting subgrade of high-speed railways in expansive soil areas[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 640-645. |
[10] | DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(SM5): 1629-1652. |
[11] | 屈晓辉.我国高速铁路轮轨系统尚应深入研究的几个技术问题[J].铁道工程学报,2003(1): 65-68. |
[11] | QU Xiaohui. Several technical problems which should be researched deeply concerned with wheel/rail system of high speed railways in China[J]. Journal of Railway Engineering Society, 2003(1): 65-68. |
[12] | 周镇勇.武广客运专线路基动力响应特性试验及数值模拟分析[D].长沙: 中南大学,2010. |
[12] | ZHOU Zhenyong. Dynamic response characteristics test and numerical simulation analysis of Wuguang Passenger Dedicated Line[D]. Changsha: Central South University, 2010. |
[13] | 杨果林,邱明明,申权,等.防排水结构层对铁路基床动力响应的影响研究[J].中国铁道科学,2016, 37(2): 8-16. |
[13] | YANG Guolin, QIU Mingming, SHEN Quan, et al. Effect of waterproofing and drainage structure layer on dynamic response of railway subgrade bed[J]. China Railway Science, 2016, 37(2): 8-16. |
[14] | 方开泰,马长兴.正交与均匀试验设计[M].北京: 科学出版社,2001. |
[14] | FANG Kaitai, MA Changxing. Orthogonal and uniform experimental design[M]. Beijing: Science Press, 2001. |
[15] | 沈祥明,刘坡拉,汪继锋.基于层次分析法的铁路岩溶隧道突水风险评价[J].铁道工程学报,2010(12): 56-63. |
[15] | SHEN Xiangming, LIU Pola, WANG Jifeng. Evaluation of water-inrush risks of karst tunnel with analytic hierarchy process[J]. Journal of Railway Engineering Society, 2010(12): 56-63. |
/
〈 |
|
〉 |