基于代理模型的三立柱半潜平台多目标优化

展开
  • 上海交通大学 海洋工程国家重点实验室;高新船舶与深海开发装备协同创新中心,上海  200240
丘文桢(1993-),男,福建省龙岩市人,硕士生,从事海洋平台多目标优化研究.

收稿日期: 2019-03-28

  网络出版日期: 2021-01-19

Multi-Objective Optimization of Three-Column Semi-Submersible Platforms Based on Surrogate Models

Expand
  • State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-03-28

  Online published: 2021-01-19

摘要

在半潜平台初始设计阶段,平台主尺度是影响平台水动力性能和建造成本的关键性因素.因此,对半潜平台主尺度进行多目标优化是一项极具工程意义的研究工作.首先,采用试验设计法确定平台的设计变量和样本数据库.其次,对半潜平台采用面元法和莫里森公式结合的方法进行水动力特性分析.同时在静水面上布置波面升高监测点,计算平台气隙值.根据数值模拟得到的数据库建立基于径向基函数的代理模型,并通过缺一交叉验证法得到径向基函数中的形参数值.所建立的代理模型可以极大提高优化效率.最后,采用多目标粒子群优化算法,以平台安全性和经济性作为两个优化目标,以平台稳性、气隙高度、水平方向运动性能作为约束条件,得到半潜平台的优化方案.通过对半潜平台多目标优化方案的分析,最终提出三立柱半潜平台最高效的优化策略.

本文引用格式

丘文桢, 宋兴宇, 张新曙 . 基于代理模型的三立柱半潜平台多目标优化[J]. 上海交通大学学报, 2021 , 55(1) : 11 -20 . DOI: 10.16183/j.cnki.jsjtu.2019.087

Abstract

In the initial design stage of a semi-submersible platform, the main particulars of the platform are the key factor affecting the hydrodynamic performance and construction cost. Therefore, multi-objective optimization of the main particulars of the semi-submersible platform is of great engineering significance. First, the design variables of each platform and sample database are determined by design of experiments. Then, the hydrodynamic performances of the semi-submersible platform are analyzed by using the panel method and Morison’s equation. The distribution of probes for estimating the wave elevations on the calm water surface is arranged, and the airgap can be computed. Based on the database obtained by numerical simulation, the surrogate models based on radial basis function (RBF) are established. Next, the formal parameters in RBF are obtained by using the leave-one-out cross validation method. The surrogate model can greatly improve the optimization efficiency. Finally, by using the multi-objective particle swarm optimization (MOPSO) method, taking safety and economy of offshore platforms as two optimization objectives, and taking platform stability, airgap and horizontal motion performance as constraints, the optimization program for the semi-submersible platform can be obtained. Through the detailed analyses of the optimization program for the semi-submersible platform, the most efficient design strategy for the three-column semi-submersible platform is proposed.

参考文献

[1] 张新曙,尤云祥,滕明清.深海半潜浮式生产平台关键理论与技术问题[J].海洋工程,2016, 34(1): 117-123.
[1] ZHANG Xinshu, YOU Yunxiang, TENG Mingqing. Review of the key theories and technologies for the development of deep-sea semi-submersible floating production unit[J]. The Ocean Engineering, 2016, 34(1): 117-123.
[2] 陈新权,谭家华. 基于遗传算法的超深水半潜式平台优化[J]. 中国海洋平台,2006, 21(6): 24-27.
[2] CHEN Xinquan, TAN Jiahua. Principal dimensions optimization of semisubmersible for ultra-deepwater based on genetic algorithm[J]. China Offshore Platform, 2006, 21(6): 24-27.
[3] PARK Y, JANG B S, KIM J D. Hull-form optimization of semi-submersible FPU considering seakeeping capability and structural weight[J]. Ocean Engineering, 2015, 104: 714-724.
[4] KIM D J, JANG B S. Application of multi-objective optimization for TLP considering hull-form and tendon system[J]. Ocean Engineering, 2016, 116: 142-156.
[5] ZHANG X S, SONG X Y, YUAN Z M, et al. Glo-bal motion and airgap computations for semi-submersible floating production unit in waves[J]. Ocean Engineering, 2017, 141: 176-204.
[6] 周佳,尉志源,王璞. 半潜式生产平台整体设计与方案优化[J]. 中国海洋平台,2017, 32(1): 21-25.
[6] ZHOU Jia, WEI Zhiyuan, WANG Pu. Semi-submersible production unit design and optimization[J]. China Offshore Platform, 2017, 32(1): 21-25.
[7] ZHANG X S, SONG X Y, QIU W Z, et al. Multi-objective optimization of Tension Leg Platform using evolutionary algorithm based on surrogate model[J]. Ocean Engineering, 2018, 148: 612-631.
[8] LIU B, YANG H, LANCASTER M J. Global optimization of microwave filters based on a surrogate model-assisted evolutionary algorithm[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6): 1976-1985.
[9] BAIRD S, BOHREN J A, MCINTOSH C, et al. Optimal design of experiments in the presence of interference[J]. The Review of Economics and Statistics, 2018, 100(5): 844-860.
[10] NAZARI J, NILI AHMADABADI M, ALMASIEH H. The method of radial basis functions for the solution of nonlinear Fredholm integral equations system[J]. Journal of Linear and Topological Algebra, 2017, 6(1): 11-28.
[11] MARINI F, WALCZAK B. Particle swarm optimization (PSO). A tutorial[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 153-165.
[12] GARG H. A hybrid PSO-GA algorithm for constrained optimization problems[J]. Applied Mathematics and Computation, 2016, 274: 292-305.
[13] REYES-SIERRA M, COELLO C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research, 2006, 2(3): 287-308.
[14] PENG G, FANG Y W, PENG W S, et al. Multi-objective particle optimization algorithm based on sharing-learning and dynamic crowding distance[J]. Optik, 2016, 127(12): 5013-5020.
文章导航

/