基于OpenFOAM几何流体体积方法的波浪数值模拟

展开
  • 1.上海交通大学 海洋工程国家重点实验室,上海  200240
    2.自然资源部海洋减灾中心,北京  100194
    3.上海交通大学 高新船舶与深海开发装备协同创新中心,上海  200240
田康(1995-),男(土家族),重庆市人,硕士生,从事月池问题CFD模拟研究.

收稿日期: 2019-09-17

  网络出版日期: 2021-01-19

基金资助

国家自然科学基金项目(51679138)

Numerical Wave Simulation Using Geometrical VOF Method Based on OpenFOAM

Expand
  • 1.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Natural Marine Hazard Mitigation Service, Beijing 100194, China
    3.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-09-17

  Online published: 2021-01-19

摘要

波浪数值模拟一直是船舶海洋工程领域非常重要的研究课题.该研究基于开源计算流体力学分析平台OpenFOAM对Stokes五阶波进行模拟.由于几何流体体积(VOF)方法中的几何重构处理能够实现对自由液面更精准的捕捉,所以该研究采用了OpenFOAM内置几何VOF方法——isoAdvector方法,进行自由液面捕捉,通过二次开发引入松弛区方法进行消波处理.对几何VOF方法下网格密度及库朗数进行了收敛性分析,发现可用较大库朗数获得较好的波浪模拟结果;在不同波陡和波频情况下,对几何VOF方法和代数VOF方法模拟波浪的波高及相位进行分析,并与Stokes五阶波理论值进行了对比,研究表明几何VOF方法能更好地对波高进行模拟.最后探讨了松弛区方法中消波区长度及权重分布对消波效果的影响,结果显示大于2倍波长的消波区长度配合指数权重分布可达到最佳消波效果.

本文引用格式

田康, 张尧, 李金龙, 张新曙, 尤云祥 . 基于OpenFOAM几何流体体积方法的波浪数值模拟[J]. 上海交通大学学报, 2021 , 55(1) : 1 -10 . DOI: 10.16183/j.cnki.jsjtu.2020.99.015

Abstract

Numerical wave simulation is a significant research topic. In this paper, the open source computational fluid dynamics (CFD) platform, OpenFOAM, is utilized to simulate Stokes fifth-order waves. Since geometrical volume-of-fluid (VOF) could better capture free surface due to its geometrical reconstruction step, the free surface simulations are accomplished by applying OpenFOAM built-in geometrical VOF method-isoAdvector, and the relaxation zone scheme is introduced through secondary development for wave absorption. The mesh density and Courant number convergence analyses with geometrical VOF are conducted. The simulation shows that satisfactory results could be obtained with a large Courant number. The algebraic and geometrical VOF simulated data with respect to wave elevation and phase at varied wave steepnesses and frequencies are recorded and compared with the theoretical value of Stokes fifth-order waves, which demonstrates that geometrical VOF is better than algebraic VOF in the prediction of wave elevation. Finally, the lengths and weights of the wave absorption zone are discussed, and the results imply that the best practice for the wave absorption is assigning the wave absorption zone length at least two times of the wave length along with applying exponential weight distribution.

参考文献

[1] 刘霞,谭国焕,王大国. 基于边界造波法的二阶Stokes波的数值生成[J]. 辽宁工程技术大学学报(自然科学), 2010, 29(1): 107-111.
[1] LIU Xia, TAN Guohuan, WANG Daguo. Numerical simulation of second-order stokes based on wave-generation method of defining inlet boundary conditions[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(1): 107-111.
[2] 王永学. 无反射造波数值波浪水槽[J]. 水动力学研究与进展,1994, 9(2): 205-213.
[2] WANG Yongxue. Numerical wave making tank without wave reflection[J]. Journal of Hydrodynamics, 1994, 9(2): 205-213.
[3] WEI G, KIRBY J T, SINHA A. Generation of waves in Boussinesq models using a source function method[J]. Coastal Engineering, 1998, 36(4): 271-299.
[4] HARLOW F H, WELCH J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. Physics of Fluids, 1965, 8(12): 2182-2189.
[5] HIRT C W, NICHOLS B D. Volume of fluid method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[6] ROENBY J, BREDMOSE H, JASAK H. A computational method for sharp interface advection[J]. Royal Society Open Science, 2016, 3(11): 160405.
[7] HATAYAMA S. Comparison of effectiveness of four open boundary conditions for incompressible unbounded flows[J]. Technical Report of National Aerospace Laboratory, 1998: 1-28.
[8] CLEMENT A. Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves[J]. Journal of Computational Physics, 1996, 126(1): 139-151.
[9] JACOBSEN N G, FUHRMAN D R, FREDSOE J. A wave generation toolbox for the open-source CFD library: OpenFoam[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073-1088.
[10] CHEN L F, ZANG J, HILLIS A J, et al. Numerical investigation of wave-structure interaction using OpenFOAM[J]. Ocean Engineering, 2014, 88: 91-109.
[11] JENSEN B, JACOBSEN N G, CHRISTENSEN E D. Investigations on the porous media equations and resistance coefficients for coastal structures[J]. Coastal Engineering, 2014, 84: 56-72.
[12] 王东旭. 基于OpenFOAM的数值波浪水槽的开发与应用[D]. 大连: 大连海洋大学,2018.
[12] WANG Dongxu. Research and development of numerical wave tank based on OpenFOAM[D]. Dalian: Dalian Maritime University, 2018.
[13] ALBADAWI A, DONOGHUE D, ROBINSON A J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53: 11-28.
[14] SOUTO-IGLESIAS A, BULIAN G, BITA-VERA E. A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion[J]. Ocean Engineering, 2015, 105: 136-159.
[15] BERBEROVIC E, VAN HINSBERG N, JAKIRLIC S, et al. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution[J]. Physical Review E, 2009, 79 (3): 036306.
[16] BRECHT D, PIETER R, PETER T. Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopole subjected to regular waves using OpenFOAM[J]. Coastal Engineering, 2017, 125: 81-94.
[17] BRECHT D, PETER T, PIETER R. Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM[J]. Coastal Engineering, 2018, 138: 49-65.
文章导航

/