收稿日期: 2019-09-26
网络出版日期: 2020-12-31
基金资助
国家自然科学基金(51808481);江苏省自然科学基金(BK20170477)
Influence of Strengthened Node Arrangement on Pull-Out Characteristics of Biaxial Geogrid
Received date: 2019-09-26
Online published: 2020-12-31
随着土工加筋技术的发展,加筋材料形式趋向于三维化,通过在普通双向土工格栅横、纵肋交叉节点处布置一定厚度的加强块,形成了具有三维加筋效果的加强节点土工格栅,节点布置方式分为节点总厚度相等的上下双侧布置和上侧单侧布置两种方式.为了探索筋土界面之间复杂的相互作用机制,开展了一系列室内拉拔试验,探究了加强节点布置方式对筋土界面特性的影响,基于刺入剪切破坏理论分析了加强节点的作用机理并得到了极限拉拔阻力理论模型.结果表明:加强节点土工格栅的极限拉拔阻力与法向应力、节点厚度呈正相关关系.同一法向应力下,与普通土工格栅相比,两种节点布置方式工况的极限拉拔阻力均有一定程度的提高,提高率最高分别为118.33%和96.73%,表现为界面似摩擦系数、似黏聚力和综合摩擦角同时增加,且等节点厚度时上下双侧布置方式优于上侧单侧布置方式.基于刺入剪切破坏模式的理论值与试验值之间误差小于10%,加强节点显著提高了格栅的拉拔阻力.
张孟喜, 马原, 邱成春 . 加强节点布置方式对双向土工格栅拉拔特性的影响[J]. 上海交通大学学报, 2020 , 54(12) : 1307 -1315 . DOI: 10.16183/j.cnki.jsjtu.2019.275
With the development of the geotechnical reinforcement technology, the form of reinforcing materials tends to be three-dimensional. Strengthened blocks of a certain thickness are attached to the joints of the longitudinal and transverse ribs of an ordinary biaxial geogrid so that it becomes a geogrid with strengthened nodes with a three-dimensional reinforcement effect. The layout of the strengthened nodes is divided into two types: upper and lower bilateral arrangement and upper unilateral arrangement, in which the total node thickness was the same. To explore the complex interaction mechanism of the reinforced soil interface, a series of indoor pull-out tests are conducted to investigate the influence of strengthened node arrangement on the characteristics of the reinforced soil interface. Based on the punching shear failure mechanism, the reinforcing mechanism of strengthened nodes is analyzed and the theoretical model of ultimate pull-out resistance is obtained. The results show that the ultimate pull-out resistance of the geogrid with strengthened nodes has a positive correlation with normal stress and node thickness. At the same normal stress, compared with the ordinary geogrid, the ultimate pull-out resistance of the two layout types of strengthened nodes is improved to some extent. The highest improvement rates are 118.33% and 96.73%, respectively. The interface apparent friction coefficient, pseudo cohesion, and comprehensive friction angle increase simultaneously. The ultimate pull-out resistance of the upper and lower bilateral arrangement is bigger than that of the upper unilateral arrangement. The error between the theoretical value based on the punching shear failure mode and the experimental value is less than 10%, and the strengthened node significantly improves the pull-out resistance of the geogrid.
[1] | 包承纲. 土工合成材料界面特性的研究和试验验证[J].岩石力学与工程学报,2006, 25(9): 1735-1744. |
[1] | BAO Chenggang. Study on interface behavior of geosynthetics and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1735-1744. |
[2] | 朱顺然,徐超,丁金华. 土工织物-砂土界面的叠环式剪切试验[J]. 岩土力学,2018, 39(5): 1775-1780. |
[2] | ZHU Shunran, XU Chao, DING Jinhua. Laminated shear test of geotextile-sand interface[J]. Rock and Soil Mechanics, 2018, 39(5): 1775-1780. |
[3] | 包承纲,汪明远,丁金华. 格栅加筋土工作机理的试验研究[J]. 长江科学院院报,2013, 30(1): 34-41. |
[3] | BAO Chenggang, WANG Mingyuan, DING Jinhua. Mechanism of soil reinforced with geogrid[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(1): 34-41. |
[4] | 靳静,杨广庆,刘伟超. 横肋间距对土工格栅拉拔特性影响试验研究[J]. 中国铁道科学,2017, 38(5): 1-8. |
[4] | JIN Jing, YANG Guangqing, LIU Weichao. Experimental study on effect of transverse rib spacing on geogrid pull-out characteristics[J]. China Railway Science, 2017, 38(5): 1-8. |
[5] | MORACI N, GIOFFRé D. A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil[J]. Geotextiles and Geomembranes, 2006, 24(2): 116-128. |
[6] | 黄文彬,陈晓平. 土工织物与吹填土界面作用特性试验研究[J]. 岩土力学,2014, 35(10): 2831-2837. |
[6] | HUANG Wenbin, CHEN Xiaoping. Experimental studies of interface characteristics between geotextile and hydraulic fill soil [J]. Rock and Soil Mechanics, 2014, 35(10): 2831-2837. |
[7] | 王家全,陆梦梁,周岳富,等. 土工格栅纵横肋的筋土承载特性分析[J]. 岩土工程学报,2018, 40(1): 186-193. |
[7] | WANG Jiaquan, LU Mengliang, ZHOU Yuefu, et al. Bearing characteristics of reinforced soil with longitudinal and transverse ribs of geogrids [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 186-193. |
[8] | 谢宝琎,张向东,杜常博. 不同含水率下尾矿与土工格栅界面特性的试验研究[J]. 实验力学,2018, 33(1): 127-133. |
[8] | XIE Baojin, ZHANG Xiangdong, DU Changbo. Experiment study of interface characteristics between geogrid and tailings with different water contents[J]. Journal of Experimental Mechanics, 2018, 33(1): 127-133. |
[9] | IRSYAM M, HRYCIW R D. Friction and passive resistance in soil reinforced by plane ribbed inclusions[J]. Geotechnique, 1991, 41(4): 485-498. |
[10] | RAZZAZAN S, KESHAVARZ A, MOSALLANEZHAD M. Pullout behavior of polymeric strip in compacted dry granular soil under cyclic tensile load conditions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(15): 968-976. |
[11] | MOSALLANEZHAD M, TAGHAVI S H S, HATAF N, et al. Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions[J]. Geotextiles and Geomembranes, 2016, 44(1): 70-80. |
[12] | 蔡春,张孟喜,赵岗飞,等. 带加强肋单向土工格栅的拉拔试验[J]. 岩土力学,2012, 33(1): 53-59. |
[12] | CAI Chun, ZHANG Mengxi, ZHAO Gangfei, et al. Pull-out test of uniaxial geogrid with strengthening ribs[J]. Rock and Soil Mechanics, 2012, 33(1): 53-59. |
[13] | 李磊,张孟喜,周小凤,等. 带加强节点双向土工格栅的拉拔试验研究[J]. 水利学报,2012, 43(12): 1494-1499. |
[13] | LI Lei, ZHANG Mengxi, ZHOU Xiaofeng, et al. Pull-out tests of biaxial geogrid with strengthening nodes[J]. Journal of Hydraulic Engineering, 2012, 43(12): 1494-1499. |
[14] | 邱成春,张孟喜,王一鸣. 带加强节点土工格栅加筋路堤动力响应的颗粒流分析[J]. 上海交通大学学报,2015, 49(7): 957-960. |
[14] | QIU Chengchun, ZHANG Mengxi, WANG Yiming. Analysis of dynamic response of embankment reinforced with geogrid with strengthening nodes based on PFC2D[J]. Journal of Shanghai Jiao Tong University, 2015, 49(7): 957-960. |
[15] | 李贵超,张孟喜. 带加强锚固片的双向土工格栅拉拔试验研究[J]. 水力发电学报,2017, 36(5): 104-111. |
[15] | LI Guichao, ZHANG Mengxi. Pull-out tests of biaxial geogrid with strengthening anchor pieces[J]. Journal of Hydroelectric Engineering, 2017, 36(5): 104-111. |
[16] | HOU J, ZHANG M X, DAI Z H, et al. Bearing capacity of strip foundations in horizontal-vertical reinforced soils[J]. Geotextiles and Geomembranes, 2016, 45(1): 29-34. |
[17] | MOSALLANEZHAD M, ALFARO M C, HATAF N, et al. Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil[J]. Geotextiles and Geomembranes, 2016, 44(1): 457-462. |
[18] | MAKKAR F M, CHANDRAKARAN S, SANKAR N. Behaviour of model square footing resting on sand reinforced with three-dimensional geogrid[J]. International Journal of Geosynthetics and Ground Engineering, 2017, 3(1): 3.1-3.10. |
[19] | HEGDE A, ROY R. A Comparative numerical study on soil-geosynthetic interactions using large scale direct shear test and pullout test[J]. International Journal of Geosynthetics and Ground Engineering, 2018, 4(1): 2.1-2.11. |
[20] | ALAGIYAWANNA A M N, SUGIMOTO M, SATO S, et al. Influence of longitudinal and transverse members on geogrid pullout behavior during deformation[J]. Geotextiles and Geomembranes, 2001, 19(8): 483-507. |
[21] | JEWELL R A, MILLIGAN G W E, SARSBY R W, et al. Interaction between soil and geogrids[C]∥Proceeding of the Symposium on Polymer Grid Reinforcement in Civil Engineering. London: Thomas Telford Limited, 1984: 19-29. |
[22] | BERGADO D T, CHAI J C. Pullout force/displacement relationship of extensible grid reinforcements[J]. Geotextiles and Geomembranes, 1994, 13(5): 295-316. |
[23] | DYER M R. Observation of the stress distribution in crushed glass with applications to soil reinforcement[D]. Oxford: University of Oxford, 1985. |
[24] | 杨广庆,徐超,张孟喜,等. 土工合成材料加筋土结构应用技术指南[M]. 北京: 人民交通出版社,2016. |
[24] | YANG Guangqing, XU Chao, ZHANG Mengxi, et al. Geosynthetics reinforcement soil structure application guidance[M]. Beijing: People’s Communications Publishing House, 2016. |
[25] | 高俊丽,张孟喜,林永亮,等. 加肋土工膜与砂性土界面相互作用机制分析[J]. 岩土力学,2012, 33(8): 2465-2471. |
[25] | GAO Junli, ZHANG Mengxi, LIN Yongliang, et al. Analysis of interaction mechanism of reinforced geomembrane and sandy soil interface[J]. Rock and Soil Mechanics, 2012, 33(8): 2465-2471. |
/
〈 |
|
〉 |