求解零空闲流水车间调度问题的离散正弦优化算法

展开
  • 华东理工大学 化工过程先进控制和优化技术教育部重点实验室,上海  200237
赵芮(1994-),女,重庆市人,硕士生,研究方向为生产调度.

收稿日期: 2019-11-11

  网络出版日期: 2020-12-31

基金资助

国家自然科学基金(61973120)

A Discrete Sine Optimization Algorithm for No-Idle Flow-Shop Scheduling Problem

Expand
  • Key Laboratory of Advanced Control and Optimization for Chemical Process of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

Received date: 2019-11-11

  Online published: 2020-12-31

摘要

针对以最小化最大完工时间(makespan)为目标的零空闲流水车间调度问题(NIFSP),提出一种离散正弦优化算法(DSOA)进行求解.受正弦波形的启发,原始的正弦优化算法(SOA)是一种利用正弦函数对个体位置进行更新的全局优化算法.首先,重新定义了适应组合优化问题的位置更新策略,采用一种去除工件数大小可变的迭代贪婪算法来对个体位置进行更新,以提高算法的探索能力.其次,采用了交叉操作和保留精英解的选择策略,避免算法陷入局部最优.最后,为了提高局部搜索的开发能力和算法精度,引入了一种基于插入的局部搜索方法,以便于在当前最优解的周围寻找更好的解.此外,基于Taillard基准,给出了算法性能比较的仿真结果,实验结果验证了所提出的DSOA算法求解NIFSP的有效性.

本文引用格式

赵芮, 顾幸生 . 求解零空闲流水车间调度问题的离散正弦优化算法[J]. 上海交通大学学报, 2020 , 54(12) : 1291 -1299 . DOI: 10.16183/j.cnki.jsjtu.2019.321

Abstract

Aimed at the no-idle flow-shop scheduling problem (NIFSP) with minimized makespan, a discrete sine optimization algorithm (DSOA) is proposed. Inspired by sine waveforms, the original sine optimization algorithm (SOA) is a global optimization algorithm, which uses the sine function to update the position of search agents. First, the update position strategy to adapt to the combinatorial optimization problem is redefined. An iterated greedy algorithm with a variable removing size is employed to update the position to enhance the exploration ability. Then, a crossover strategy and a selection strategy are applied to avoid the algorithm falling into local optimum. Next, to improve the exploitation ability of local search and the accuracy of the algorithm, an insertion-based local search scheme is applied in DSOA to search for a better solution around the current optimal solution. Finally, based on the Taillard benchmark, the simulation results of performance comparisons are presented. The experimental results demonstrate the effectiveness of the proposed DSOA algorithm for solving NIFSP.

参考文献

[1] LIN J, ZHANG S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem[J]. Computers & Industrial Engineering, 2016, 97: 128-136.
[2] JOHNSON S M. Optimal two- and three-stage production schedules with setup times included[J]. Naval Research Logistics Quarterly, 1954, 1(1): 61-68.
[3] GONCHAROV Y, SEVASTYANOV S. The flow shop problem with no-idle constraints: A review and approximation[J]. European Journal of Operational Research, 2009, 196(2): 450-456.
[4] MAKUCHOWSKI M. Permutation, no-wait, no-idle flow shop problems[J]. Archives of Control Sciences, 2015, 25(2): 189-199.
[5] BAPTISTE P, HGUNY L K. A branch and bound algorithm for the F/no-idle/Cmax[C]∥Proceedings of the International Conference on Industrial Engineering and Production Management. Lyon, France: IEEE, 1997: 429-438.
[6] PAN Q K, WANG L. No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(7/8): 796-807.
[7] DENG G L, GU X S. A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion[J]. Computers & Operations Research, 2012, 39(9): 2152-2160.
[8] FATIH TASGETIREN M, PAN Q K, SUGANTHAN P N, et al. A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem[J]. Computers & Operations Research, 2013, 40(7): 1729-1743.
[9] TASGETIREN M F, PAN Q K, SUGANTHAN P N, et al. A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6758-6779.
[10] ZHOU Y Q, CHEN H, ZHOU G. Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem[J]. Neurocomputing, 2014, 137: 285-292.
[11] SHEN J N, WANG L, WANG S Y. A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion[J]. Knowledge-Based Systems, 2015, 74: 167-175.
[12] 刘翱,冯骁毅,邓旭东,等. 求解零空闲置换流水车间调度问题的离散烟花算法[J]. 系统工程理论与实践,2018, 38(11): 2874-2884.
[12] LIU Ao, FENG Xiaoyi, DENG Xudong, et al. A discrete fireworks algorithm for solving no-idle permutation flow shop problem[J]. Systems Engineering-Theory & Practice, 2018, 38(11): 2874-2884.
[13] SHAO W S, PI D C, SHAO Z S. Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan crite-rion[J]. Applied Soft Computing, 2017, 54: 164-182.
[14] SHAO W S, PI D C, SHAO Z S. A hybrid discrete teaching-learning based meta-heuristic for solving no-idle flow shop scheduling problem with total tardiness criterion[J]. Computers & Operations Research, 2018, 94: 89-105.
[15] MIRJALILI S. SCA: A Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[16] MESHKAT M, PARHIZGAR M. Sine Optimization Algorithm (SOA): A novel optimization algorithm by change update position strategy of search agent in Sine Cosine Algorithm[C]∥2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS). Piscataway, NJ, USA: IEEE, 2017: 11-16.
[17] LI S, FANG H J, LIU X Y. Parameter optimization of support vector regression based on sine cosine algorithm[J]. Expert Systems With Applications, 2018, 91: 63-77.
[18] WANG J Z, YANG W D, DU P, et al. A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm[J]. Energy Conversion and Management, 2018, 163: 134-150.
[19] ATTIA A F, EL SEHIEMY R A, HASANIEN H M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 331-343.
[20] LIU W B, JIN Y, PRICE M. A new Nawaz-Enscore-Ham-based heuristic for permutation flow-shop problems with bicriteria of makespan and machine idle time[J]. Engineering Optimization, 2016, 48(10): 1808-1822.
[21] ZHAO F Q, LIU H, ZHANG Y, et al. A discrete Water Wave Optimization algorithm for no-wait flow shop scheduling problem[J]. Expert Systems With Applications, 2018, 91: 347-363.
[22] TAILLARD E. Benchmarks for basic scheduling problems[J]. European Journal of Operational Research, 1993, 64(2): 278-285.
文章导航

/