收稿日期: 2019-12-31
网络出版日期: 2020-12-31
基金资助
国家自然科学基金(61973226);山西省重点研发计划(201903D121143);山西省科技重大专项(20181102017);山西省自然科学基金(2015011052)
Unsupervised Regression Model of Geodesic Flow Kernel Based on Dynamic Independent Component Analysis and Dynamic Principal Component Analysis
Received date: 2019-12-31
Online published: 2020-12-31
针对工业过程中工况改变时,传统软测量模型难以适应数据分布变化,易出现模型性能恶化的问题.引入一种基于测地线流式核的迁移学习方法,同时针对该方法难以解决工业过程中动态特性提取和数据不完全服从高斯分布问题进行优化.首先构建增广矩阵以应对过程中的动态特性,对处理后的数据进行独立成分分析和主成分分析,用以提取源域与目标域的非高斯信息和高斯信息,并在格拉斯曼流形空间下对源域的非高斯信息和高斯信息分别适配目标域,最后使用最大均值差异方法对适配后的源域与目标域进行分布度量,并为基于源域构建的模型加权.结果表明该方法不仅降低了源域和目标域的分布差异,而且解决了工业过程中的动态特性提取和其数据不完全服从高斯分布的问题.通过在田纳西伊斯曼数据上的实验,证明了模型的有效性和实用性.
来颜博, 阎高伟, 程兰, 陈泽华 . 基于动态独立成分分析和动态主成分分析的测地线流式核无监督回归模型[J]. 上海交通大学学报, 2020 , 54(12) : 1269 -1277 . DOI: 10.16183/j.cnki.jsjtu.2020.171
It is difficult to accurately measure parameters by using the traditional soft sensor algorithm when the working condition of industrial process is changed. Therefore, a transfer learning strategy is introduced based on geodesic flow kernel to solve this problem. At the same time, the method is optimized to solve the problems of dynamic characteristic extraction and incomplete Gaussian distribution in industrial process. The augmented matrix is first constructed to deal with the dynamic characteristics of the process. Independent component analysis and principal component analysis are performed on the processed data to extract the non-Gaussian and Gaussian information of the source domain and the target domain. Then, the non-Gaussian and Gaussian information of the source domain is adapted to the target domain respectively on the Grassmann manifold. Finally, the maximum mean discrepancy is used to measure the distribution between the source domain and the target domain after domain adaptation, and the calculated results are applied to construct the weight of the model based on the source domain after domain adaptation. The results show that the method not only reduces the difference of distribution between the source domain and the target domain, but also solves the problems of dynamic characteristic extraction and incomplete Gaussian distribution in industrial process. The validity and the practicability of the model are proved by experiments on Tennessee Eastman data.
[1] | LI W T, WANG D H, CHAI T Y. Multisource data ensemble modeling for clinker free lime content estimate in rotary kiln sintering processes[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(2): 303-314. |
[2] | BIDAR B, SADEGHI J, SHAHRAKI F, et al. Data-driven soft sensor approach for online quality prediction using state dependent parameter models[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162: 130-141. |
[3] | 李浩,杨敏,石向荣,等. 基于主曲线的软测量方法及其在精馏塔上的应用[J]. 化工学报,2012, 63(8): 2492-2499. |
[3] | LI Hao, YANG Min, SHI Xiangrong, et al. Soft sensing method based on principal curves and its application in distillation columns[J]. Journal of Chemical Industry and Engineering (China), 2012, 63(8): 2492-2499. |
[4] | 颜学峰. 基于径基函数-加权偏最小二乘回归的干点软测量[J]. 自动化学报,2007, 33(2): 193-196. |
[4] | YAN Xuefeng. Radial basis function-weighted partial least square regression and its application to develop dry point soft sensor[J]. Acta Automatica Sinica, 2007, 33(2): 193-196. |
[5] | KADLEC P, GRBIAC'G R, GABRYS B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering, 2011, 35(1): 1-24. |
[6] | 杜永贵,李思思,阎高伟,等. 基于流形正则化域适应湿式球磨机负荷参数软测量[J]. 化工学报,2018, 69(3): 1244-1251. |
[6] | DU Yonggui, LI Sisi, YAN Gaowei, et al. Soft sensor of wet ball mill load parameter based on domain adaptation with manifold regularization[J]. Journal of Chemical Industry and Engineering (China), 2018, 69(3): 1244-1251. |
[7] | ZHAO S J, ZHANG J, XU Y M.Performance monitoring of processes with multiple operating modes through multiple PLS models[J]. Journal of Process Control, 2006, 16(7): 763-772. |
[8] | JIN H P, CHEN X G, WANG L, et al. Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 151: 228-244. |
[9] | 李元,张新民. 基于非高斯信息的JITL软测量模型[J]. 上海交通大学学报,2015, 49(6): 897-901. |
[9] | LI Yuan, ZHANG Xinmin. Non-Gaussian information based JITL soft sensor model[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 897-901. |
[10] | DAUME H, MARCU D. Domain adaptation for statistical classifiers[J]. Journal of Artificial Intelligence Research, 2011, 26(1): 101-126. |
[11] | LV X, GUAN Y, DENG B Y. Transfer learning based clinical concept extraction on data from multiple sources[J]. Journal of Biomedical Informatics, 2014, 52: 55-64. |
[12] | SUN S L, SHI H L, WU Y B. A survey of multi-source domain adaptation[J]. Information Fusion, 2015, 24: 84-92. |
[13] | CHEN H Y, CHIEN J T. Deep semi-supervised learning for domain adaptation[C]∥25th International Workshop on Machine Learning for Signal Processing (MLSP). Boston, MA, USA: IEEE, 2015: 1-6. |
[14] | FERNANDO B, TOMMASI T, TUYTELAARS T. Joint cross-domain classification and subspace learning for unsupervised adaptation[J]. Pattern Recognition Letters, 2015, 65: 60-66. |
[15] | WANG J T, ZHENG H, HUANG Y, et al. Vehicle type recognition in surveillance images from labeled web-nature data using deep transfer learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2913-2922. |
[16] | AFZAL M Z, K?LSCH A, AHMED S, et al. Cutting the error by half: Investigation of very deep cnn and advanced training strategies for document image classification[C]∥14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Kyoto, Japan: IEEE, 2017, 1: 883-888. |
[17] | XU B H, FU Y W, JIANG Y G, et al. Heterogeneous knowledge transfer in video emotion recognition, attribution and summarization[J]. IEEE Transactions on Affective Computing, 2018, 9(2): 255-270. |
[18] | LIU Y, YANG C, LIU K X, et al. Domain adaptation transfer learning soft sensor for product quality prediction[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 192: 103813. |
[19] | 贺敏,汤健,郭旭琦,等.基于流形正则化域适应随机权神经网络的湿式球磨机负荷参数软测量[J]. 自动化学报,2019, 45(2): 398-406. |
[19] | HE Min, TANG Jian, GUO Xuqi, et al. Soft sensor for ball mill load using DAMRRWNN model[J]. Acta Automatica Sinica, 2019, 45(2): 398-406. |
[20] | GOPALAN R, LI R, CHELLAPPA R. Domain adaptation for object recognition: An unsupervised approach[C]∥International Conference On Computer Vision. Barcelona, Spain: IEEE, 2011: 999-1006. |
[21] | GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 2066-2073. |
[22] | SAMAT A, GAMBA P, ABUDUWAILI J, et al. Geodesic flow kernel support vector machine for hyperspectral image classification by unsupervised subspace feature transfer[J]. Remote Sensing, 2016, 8(3): 234. |
[23] | KUMAR S, SAVAKIS A. Robust domain adaptation on the l1-grassmannian manifold[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, NV, USA: IEEE, 2016: 103-110. |
[24] | KU W F, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196. |
[25] | LEE J M, YOO C K, LEE I B. Statistical monitoring of dynamic processes based on dynamic independent component analysis[J]. Chemical Engineering Science, 2004, 59(14): 2995-3006. |
[26] | ZHANG G M, LI N, LI S Y. Data-driven process monitoring method based on dynamic component analysis[C]∥Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011: 5288-5293. |
[27] | STEFATOS G, HAMZA A B. Dynamic independent component analysis approach for fault detection and diagnosis[J]. Expert Systems with Applications, 2010, 37(12): 8606-8617. |
[28] | GONG B Q, GRAUMAN K, SHA F. Learning kernels for unsupervised domain adaptation with applications to visual object recognition[J]. International Journal of Computer Vision, 2014, 109: 3-27. |
[29] | GRETTON A, BORGWARDT K, RASCH M, et al. A kernel method for the two-sample-problem[C]∥Advances In Neural Information Processing Systems. Vancouver, British Columbia, Canada: NIPS, 2006: 513-520. |
[30] | BATHELT A, RICKER N L, JELALI M.Revision of the tennessee eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314. |
[31] | 张淑美,王福利,谭帅,等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报,2016, 42(1): 60-80. |
[31] | ZHANG Shumei, WANG Fuli, TAN Shuai, et al. A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica, 2016, 42(1): 60-80. |
/
〈 |
|
〉 |