学报(中文)

基于Bathe积分算法的机械系统多体动力学方程求解方法

展开
  • 南京理工大学 机械工程学院, 南京 210094
吉磊(1990-),男,江苏省南京市人,博士生,主要研究方向为高速摩擦及多体动力学.

收稿日期: 2019-01-17

  网络出版日期: 2020-12-04

基金资助

国家自然科学基金(11472137),中央高校基本科研业务费专项资金(30919011204,309181A8801)

Solving Method for Dynamic Equations of Mechanical Multibody System by Using Bathe Integration Algorithm

Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2019-01-17

  Online published: 2020-12-04

摘要

准确与高效的求解算法一直是多体系统动力学领域的关键问题.重点研究了将Bathe积分算法应用于机械系统多体动力学方程的求解,将多体系统动力学方程整理为显含广义阻尼矩阵的一般形式.利用Bathe积分策略,推导了基于此形式动力学方程的求解流程,并将广义阻尼矩阵用于迭代计算时雅克比矩阵初值的选择,减少迭代计算次数.为了减小违约的影响,动力学方程中添加了Baumgarte违约稳定项.数值算例表明:利用Bathe积分算法求解多体系统动力学方程具有高准确性、良好的稳定性和较低的数值耗散,显含广义阻尼矩阵的动力学方程形式也使求解更加高效.

本文引用格式

吉磊,钱林方,陈光宋,尹强 . 基于Bathe积分算法的机械系统多体动力学方程求解方法[J]. 上海交通大学学报, 2020 , 54(11) : 1218 -1226 . DOI: 10.16183/j.cnki.jsjtu.2019.018

Abstract

Accurate and efficient solving algorithms have always been the key issue in the field of multibody system dynamics. Solving dynamic equations of mechanical multibody system by using Bathe integration algorithm was investigated. The dynamic equations of multibody system were arranged into a general form containing the explicitly generalized damping matrix. Based on Bathe integration algorithm, the solution process according to the form of dynamic equations was derived, and the generalized damping matrix was used in obtaining the initial value of Jacobian matrix during iterative calculation which reduces the number of iterations. In order to reduce the influence of constraint violation, the Baumgarte constraint stabilization items were added to the dynamic equations. The numerical examples show that solving the dynamic equations of multibody system by utilizing the Bathe integration algorithm has a high accuracy, a good stability, and a low numerical dissipation, and the dynamic equation form with an explicity generalized damping matrix obviously makes the solution more efficient.

参考文献

[1]刘延柱, 潘振宽, 戈新生. 多体系统动力学[M]. 北京: 高等教育出版社, 2014. LIU Yanzhu, PAN Zhenkuan, GE Xinsheng. Dynamics of multibody systems[M]. Beijing: Higher Education Press, 2014. [2]洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 1999. HONG Jiazhen. Computational dynamics of multibody systems[M]. Beijing: Higher Education Press, 1999. [3]洪嘉振, 刘铸永. 刚柔耦合动力学的建模方法[J]. 上海交通大学学报, 2008, 42(11): 1922-1926. HONG Jiazhen, LIU Zhuyong. Modeling methods of rigid-flexible coupling dynamics[J]. Journal of Shanghai Jiao Tong University, 2008, 42(11): 1922-1926. [4]王铁成, 陈国平, 孙东阳. 基于绝对节点坐标法的柔性多体系统灵敏度分析[J]. 振动与冲击, 2015, 34(24): 89-92. WANG Tiecheng, CHEN Guoping, SUN Dongyang. Sensitivity analysis of flexible multibody systems based on absolute nodal coordinate formulation[J]. Journal of Vibration and Shock, 2015, 34(24): 89-92. [5]CHO H J, BAE D S, CHOI J H, et al. An efficient general purpose contact search algorithm using the relative coordinate system for multibody system dynamics[J]. Solid State Phenomena, 2007, 120: 129-134. [6]杜晓旭, 崔航, 向祯晖. 基于Kane方法的波浪驱动水下航行器动力学模型建立[J]. 兵工学报, 2016, 37(7): 1236-1244. DU Xiaoxu, CUI Hang, XIANG Zhenhui. The multi-body system dynamics modeling of wave-driven underwater vehicle based on Kane method[J]. Acta Armamentarii, 2016, 37(7): 1236-1244. [7]SUZUKI T, CHO H J, RYU H S. A recursive implementation method with implicit integrator for multibody dynamics[J]. The Proceedings of the Asian Conference on Multibody Dynamics, 2002, 2002: 600-601. [8]盛立伟, 刘锦阳, 余征跃. 柔性多体系统弹性碰撞动力学建模[J]. 上海交通大学学报, 2006, 40(10): 1790-1793. SHENG Liwei, LIU Jinyang, YU Zhengyue. Dynamic modeling of a flexible multibody system with elastic impact[J]. Journal of Shanghai Jiao Tong University, 2006, 40(10): 1790-1793. [9]OMAR M. Multibody dynamics formulation for modeling and simulation of roller chain using spatial operator[J]. MATEC Web of Conferences, 2016, 51: 01003. [10]GONZLEZ F, DOPICO D, PASTORINO R, et al. Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations[J]. Nonlinear Dynamics, 2016, 85(3): 1491-1508. [11]NEGRUT D, RAMPALLI R, OTTARSSON G, et al. On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096)[J]. Journal of Computational and Nonlinear Dynamics, 2007, 2(1): 73-85. [12]NEGRUT D, JAY L O, KHUDE N. A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics[J]. Journal of Computational and Nonlinear Dynamics, 2007, 4(2): 021008. [13]JAY O L, NEGRUT D. A second order extension of the generalized-α method for constrained systems in mechanics[M]. Multibody dynamics. Dordrecht: Springer Netherlands, 2009: 143-158. [14]LUNK C, SIMEON B. Solving constrained mechanical systems by the family of Newmark and α-methods[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2006, 86(10): 772-784. [15]SHABANA A A, HUSSEIN B A. A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems[J]. Journal of Sound and Vibration, 2009, 327(3/4/5): 557-563. [16]马秀腾, 翟彦博, 罗书强. 基于θ1方法的多体动力学数值算法研究[J]. 力学学报, 2011, 43(5): 931-938. MA Xiuteng, ZHAI Yanbo, LUO Shuqiang. Numerical method of multibody dynamics based on θ1 method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 931-938. [17]马秀腾, 翟彦博, 谢守勇. 多体系统动力学指标-2超定运动方程HHT积分改进方法[J]. 中国科学: 技术科学, 2018, 48(2): 229-236. MA Xiuteng, ZHAI Yanbo, XIE Shouyong. Improved HHT integration method for index-2 over-determined equations of motion in multibody system dynamics[J]. Scientia Sinica (Technologica), 2018, 48(2): 229-236. [18]郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor-α法在接触约束多体系统动力学中的应用[J]. 物理学报, 2017, 66(16): 147-157. GUO Xian, ZHANG Dingguo, CHEN Sijia. Application of Hilber-Hughes-Taylor-α method to dynamics of flexible multibody system with contact and constraint[J]. Acta Physica Sinica, 2017, 66(16): 147-157. [19]姚廷强, 黄亚宇, 王立华. 圆柱滚子轴承多体接触动力学研究[J]. 振动与冲击, 2015, 34(7): 15-23. YAO Tingqiang, HUANG Yayu, WANG Lihua. Multibody contact dynamics for cylindrical roller bearing[J]. Journal of Vibration and Shock, 2015, 34(7): 15-23. [20]丁洁玉, 潘振宽. 多体系统动力学微分-代数方程广义-α投影法[J]. 工程力学, 2013, 30(4): 380-384. DING Jieyu, PAN Zhenkuan. Generalized-α projection method for differentialalgebraic equations of multibody dynamics[J]. Engineering Mechanics, 2013, 30(4): 380-384. [21]刘颖, 马建敏. 多体系统动力学方程的基于离散零空间理论的Newmark积分算法[J]. 机械工程学报, 2012, 48(5): 87-91. LIU Ying, MA Jianmin. Discrete null space method for the newmark integration of multibody dynamic systems[J]. Journal of Mechanical Engineering, 2012, 48(5): 87-91. [22]BATHE K J, BAIG M M I. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers & Structures, 2005, 83(31/32): 2513-2524. [23]BATHE K J. Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme[J]. Computers & Structures, 2007, 85(7/8): 437-445. [24]陈光宋. 弹炮耦合系统动力学及关键参数识别研究[D]. 南京: 南京理工大学, 2016. CHEN Guangsong. The study on the dynamic of the projectile-barrel coupled system and the corresponding key parameters[D]. Nanjing: Nanjing University of Science and Technology, 2016. [25]BAUMGARTE J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 1972, 1(1): 1-16. [26]KIM J K, CHUNG I S, LEE B H. Determination of the feedback coefficients for the constraint violation stabilization method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, 1990, 204(4): 233-242. [27]HERTZ H. On the contact of rigid elastic solids and on hardness [M]. London: Macmillan, 1896: 146-183.
文章导航

/