学报(中文)

低速加载对铝合金-玄武岩纤维增强树脂复合材料粘接接头失效的影响

展开
  • 吉林大学 汽车仿真与控制国家重点试验室, 长春 130022
栾建泽(1995-),男,辽宁省营口市人,硕士生,研究方向为车身轻量化结构设计理论与新材料连接技术.

收稿日期: 2019-11-30

  网络出版日期: 2020-12-04

基金资助

国家自然科学基金项目(51775230)

Effect of Low Speed Loading on Failure of Aluminum Alloy-Basalt Fiber Reinforced Polymer Composite Bonded Joint

Expand
  • State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China

Received date: 2019-11-30

  Online published: 2020-12-04

摘要

为了给铝合金-玄武岩纤维增强树脂复合材料(BFRP)粘接结构在汽车工业中的应用提供参考和指导,制作了铝合金-BFRP粘接接头,分别在1、50、100mm/min低速加载速率下进行准静态拉伸试验与剪切试验.结合汽车服役中的温度区间,在80℃的高温老化环境下对接头进行0、5、10、15、20d的老化实验.对老化的接头进行加载速率为1、100mm/min的准静态拉伸试验与剪切试验,得到不同老化时间下铝合金-BFRP粘接接头的准静态失效强度.结合宏观模式与扫描电子显微镜分析研究接头失效模式的变化,结果表明:铝合金-BFRP粘接接头失效强度由加载速率和老化时间共同影响.低速加载过程,接头在拉应力和切应力作用下的失效强度均随加载速率的增大而升高;在加载速率范围内,切应力作用下接头失效强度的上升幅度大于拉应力作用下的;3种低速加载速率测试中,拉应力和切应力作用下接头的失效模式分别为纤维撕裂和胶层内聚,未老化接头的宏观失效模式无明显变化.本研究对高温环境下服役的粘接结构准静态的失效预测具有工程意义.

本文引用格式

栾建泽,那景新,慕文龙,谭伟,陈宏利 . 低速加载对铝合金-玄武岩纤维增强树脂复合材料粘接接头失效的影响[J]. 上海交通大学学报, 2020 , 54(11) : 1200 -1208 . DOI: 10.16183/j.cnki.jsjtu.2019.344

Abstract

In order to provide reference and guidance for the application of bonded structure of aluminum alloy-basalt fiber reinforced polymer composite (BFRP) in the automobile industry, the aluminum alloy-BFRP bonded joints were made, and the quasi-static tensile and shear tests were conducted at the low speed loading rates of 1, 50, and 100mm/min. The aging days of 0, 5,10,15, and 20 at 80℃ was selected in combination with the temperature range in service of automobile. The quasi-static tensile and shear tests at loading rates of 1 and 100mm/min were performed for aged joints, and the quasi-static failure strength on different aging days was obtained. The failure mode of joints was studied by means of macroscopic and SEM analyses. The results show that the failure strength of aluminum alloy-BFRP bonded joints is affected by the loading rate and aging time. In the process of low speed loading, the failure strength at tensile stress and shear stress increases with the increases in loading rate. In the range of loading rate, the increase in failure strength at shear stress is larger than that at tensile stress. In the three low speed loading rate tests, the failure modes at tensile stress and shear stress are fiber tearing and adhesive layer cohesion, respectively. Low speed loading rate has no obvious effect on the macro failure mode of unaged joints. This study is of engineering significance for the quasi-static failure prediction of adhesive structures in high temperature service.

参考文献

[1]李勇俊, 雷飞, 刘启明, 等.考虑结构、材料和工艺要求的复合材料B柱优化[J]. 汽车工程, 2017, 39(8): 968-976. LI Yongjun, LEI Fei, LIU Qiming, et al. Optimization of composite B-pi11ar with considerations of structures, materials and processes requirements[J]. Automotive Engineering, 2017, 39(8): 968-976. [2]马芳武, 杨猛, 蒲永锋, 等. 混杂比对碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2019, 36(2): 362-369. MA Fangwu, YANG Meng, PU Yongfeng, et al. Effect of hybrid ratio on the flexural properties of carbon and basalt hybrid fibers reinforced epoxy resin composites[J]. Acta Materiae Compostiae Sinica, 2019, 36(2): 362-369. [3]那景新,栾建泽,刘浩垒,等. 一种客车多材料车身粘铆复合钢骨架结构分析方法: CN201811587716.0[P].2019-04-26 [2019-09-28]. NA Jingxin, LUAN Jianze, LIU Haolei, et al. A method for analyzing the skeleton structure of multi-material body sticking and riveting composite steel of passenger car: CN201811587716.0[P].2019-04-26 [2019-09-28]. [4]沈观林, 胡更开, 刘彬. 复合材料力学[M]. 第2版. 北京: 清华大学出版社, 2013. SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. [5]秦国锋, 那景新, 慕文龙, 等. 高温老化对 CFRP/铝合金粘接接头失效的影响[J]. 吉林大学学报 (工学版), 2019, 49(4): 1063-1071. QIN Guofeng, NA Jingxin, MU Wenlong, et al. Degradation failure of adhesively bonded CFRP/aluminum alloy subjected to high temperature environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1063-1071. [6]VIANA G, COSTA M, BANEA M D, et al. A review on the temperature and moisture degradation of adhesive joints[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231(5): 488-501. [7]罗书舟, 陈超, 伍乾坤, 等. 复合材料单搭接胶接接头低速冲击数值模拟[J]. 振动与冲击, 2019, 38 (1): 150-156. LUO Shuzhou, CHEN Chao, WU Qiankun, et al. Numerical simulation for low velocity impact performances of composite laminates single-lap adhesively bonded joints[J]. Journal of Vibration and Shock, 2019, 38 (1): 150-156. [8]那景新,吴长风,栾建泽,等. 一种基于客车正面碰撞的转向盘与转向管柱固定支架: CN201810925617.2[P].2018-11-27 [2019-09-28]. NA Jingxin, WU Changfeng, LUAN Jianze, et al. A steering wheel and steering column fixing bracket based on frontal collision of passenger cars: CN201810925617.2[P].2018-11-27 [2019-09-28]. [9]MACHADO J J M , NUNES P D P , MARQUES E A S, et al. Adhesive joints using aluminium and CFRP substrates tested at low and high temperatures under quasi-static and impact conditions for the automotive industry[J]. Composites Part B: Engineering, 2019, 158: 102-116. [10]韩啸, 金勇, 杨鹏, 等. 胶层厚度对胶粘剂Ⅰ型断裂韧性影响试验和仿真研究[J]. 机械工程学报, 2018, 54 (10): 43-52. HAN Xiao, JIN Yong, YANG Peng, et al. Experimental and simulation study on the effect of adhesive thickness on modeⅠfracture toughness[J]. Journal of Mechanical Engineering, 2018, 54 (10): 43-52. [11]秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D].长春: 吉林大学, 2018. QIN Guofeng. Effects of temperature and humidity on the static failure of adhesively bonded CFRP/aluminium alloy joints for automotive applications[D]. Changchun: Jilin University, 2018. [12]张欢, 许文, 邹士文, 等.环氧胶粘剂及其胶接界面热氧老化机理研究[J]. 材料导报, 2017, 31(12): 104-108. ZHANG Huan, XU Wen, ZOU Shiwen, et al. Thermal-oxidative aging mechanism of epoxy adhesive and its interface[J]. Materials Reports, 2017, 31(12): 104-108. [13]JOHAR M, WONG K J, TAMIN M N. Characteristics of adhesive joints under rate-dependent tensile loading[J]. Applied Mechanics and Materials, 2014, 660: 618-622. [14]苏玉芹, 陈俊林, 熊舒, 等.碳纤维复丝拉伸性能测试影响因素研究[J].合成纤维工业, 2019, 42(3): 34-37. SU Yuqin, CHEN Junlin, XIONG Shu, et al. Study on influential factors on tensile properties test for carbon fiber[J]. China Synthetic Fiber Industry, 2019, 42(3): 34-37. [15]JIA Z, YUAN G, HUI D, et al. Effect of high loading rate and low temperature on mode I fracture toughness of ductile polyurethane adhesive[J]. Journal of Adhesion Science and Technology, 2018, 33(1): 1-14. [16]宫亚峰, 孔维康, 孟广锐, 等. 基于落球法的复合材料板冲击特性试验[J]. 吉林大学学报 (工学版), 2019, 49(2): 401-407. GONG Yafeng, KONG Weikang, MENG Guangrui, et al. Experiment on the impact characteristics of composite plate based on falling ball method[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 401-407. [17]王晓宁. 紫外、高低温老化对玻纤增强复合材料性能的影响[D].乌鲁木齐: 新疆大学, 2017. WANG Xiaoning. Effects of UV, high and low temperature aging on glass fiber composite materials[D].Urumqi: Xinjiang University, 2017. [18]任俊铭. 温度与湿度对车用CFRP板层间老化特性的影响研究[D].长春: 吉林大学, 2019. REN Junming. Effect of temperature and humidity on interlaminar aging characteristics of vehicle CFRP plates[D].Changchun: Jilin University, 2019. [19]那景新, 高原, 慕文龙, 等.高温老化对玄武岩纤维增强树脂复合材料-铝合金单搭接接头失效的影响[J]. 复合材料学报, 2020, 37(1), 140-146. NA Jingxin, GAO Yuan, MU Wenlong, et al. Effect of high temperature exposure on adhesively bonded basalt fiber reinforced polymer composite-aluminum alloy single lap joints[J]. Acta Materiae Compositae Sinica: 2020, 37(1), 140-146. [20]中国国家标准化管理委员会.胶粘剂拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124-2008[S]. 北京: 中国标准出版社, 2008. Standardization Administration of the People’s Republic of China. Adhesive-determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124-2008[S]. Beijing: China Standards Press, 2008. [21]黄旭仁, 胡芳友, 赵培仲.加载速率对复合材料粘接修理金属结构力学性能的影响[J]. 复合材料学报, 2013, 30(2): 220-225. HUANG Xuren, HU Fangyou, ZHAO Peizhong. Loading rate effect on mechanical property of metallic structure repaired with bonded composite patch[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 220-225. [22]贾哲敏, 袁国青, 许大卫.不同应变率时复合材料胶接结构力学性能试验研究进展[J]. 中国胶粘剂, 2014, 23(12): 48-53. JIA Zhemin, YUAN Guoqing, XU Dawei. Advances in experimental research on mechanical properties of composite bonded joints at different strain rates[J]. China Adhesives, 2014, 23(12): 48-53. [23]鹿伟青, 朱传敏, 牛耀民, 等.拉伸速率对钢板胶接接头力学性能的影响[J]. 材料科学与工程学报, 2017, 35(1): 52-56. LU Weiqing, ZHU Chuanmin, NIU Yaomin, et al. Effect of tensile speed on mechanical properties of adhesive-bonded steel[J]. Journal of Materials Science and Engineering, 2017, 35(1): 52-56. [24]LEE M, YEO E, BLACKLOCK M, et al. Predicting the strength of adhesively bonded joints of vari-able thickness using a cohesive element approach[J]. International Journal of Adhesion & Adhesives, 2015, 58: 44-52. [25]JIANG X, QIANG X, KOLSTEIN H, et al. Analysis on adhesively-bonded joints of FRP-steel composite bridge under combined loading: Arcan test study and numerical modeling[J]. Polymers, 2016, 8(1): 18.
文章导航

/