学报(中文)

采用R1234yf制冷剂的汽车超低温强化补气热泵空调性能

展开
  • 1. 上海交通大学 制冷与低温工程研究所, 上海 200240; 2. 江苏中关村科技产业园节能环保研究有限公司, 江苏 常州 213300
刘雨声(1997-),男,河南省洛阳市人,硕士生,现主要从事车用空调与热系统、制冷剂的替代技术研究.

收稿日期: 2019-08-23

  网络出版日期: 2020-11-09

Performance of Automotive Ultra-Low Temperature Economized Vapor Injection Heat Pump Air Conditioning Using R1234yf Refrigerant

Expand
  • 1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Jiangsu Z-Park Energy Conservation and Environmental Protection Research Co., Ltd., Changzhou 213300, Jiangsu, China

Received date: 2019-08-23

  Online published: 2020-11-09

摘要

本文提出一种基于强化补气(EVI)技术的汽车超低温热泵空调系统,采用新型低全球变暖潜能值(GWP)的R1234yf制冷剂作为运行工质,并与传统制冷剂R134a进行性能对比测试与热泵系统优化.在-20℃超低温环境中,该热泵系统制热量与制热能效比(COP)可达2kW与2.0以上,相较于传统热泵分别提升了30%与14%,可以满足低温环境下乘员舱的制热需求.采用R1234yf制冷剂的热泵系统的制热性能虽比采用R134a制冷剂的热泵系统略有不足但基本持平,且强化补气的效果优于R134a制冷剂.此外,增大内部冷凝器面积、优化室外换热器与压缩机等部件均可显著提升热泵空调系统的性能与能效.

本文引用格式

刘雨声,李万勇,张立,施骏业,陈江平 . 采用R1234yf制冷剂的汽车超低温强化补气热泵空调性能[J]. 上海交通大学学报, 2020 , 54(10) : 1108 -1116 . DOI: 10.16183/j.cnki.jsjtu.2019.244

Abstract

In this paper, an automotive ultra-low temperature heat pump air conditioning system based on the economized vapor injection (EVI) technology is proposed. The new low-global warming potential (GWP) R1234yf is used as the refrigerant. Besides, the comparative performance test in R134a and system optimization are conducted. In the ultra-low temperature environment of -20℃, the heating performance and coefficient of performance (COP) of this system can reach 2kW and 2.0, which is 30% and 14% higher than those of the traditional heat pump. Thus, the system can meet the heating requirements of crew cabin in a low temperature environment. The heating capacity of the R1234yf system is a little bit lower but pretty much the same as R134a. Moreover, the effect of EVI for R1234yf refrigerant is better than that of R134a. Increasing the inner-condenser area and optimizing components, such as outdoor heat exchanger and compressor, can significantly improve heat pump air conditioning system performance and its energy efficiency.

参考文献

[1]SUN S H, WANG W C. Analysis on the market evolution of new energy vehicle based on population competition model[J]. Transportation Research Part D: Transport and Environment, 2018, 65: 36-50. [2]LIU Z W, HAO H, CHENG X, et al. Critical issues of energy efficient and new energy vehicles development in China[J]. Energy Policy, 2018, 115: 92-97. [3]REN J Z. New energy vehicle in China for sustainable development: Analysis of success factors and strategic implications[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 268-288. [4]ZUO W C, LI Y Q, WANG Y H. Research on the optimization of new energy vehicle industry research and development subsidy about generic technology based on the three-way decisions[J]. Journal of Cleaner Production, 2019, 212: 46-55. [5]DU Z L, LIN B Q, GUAN C X. Development path of electric vehicles in China under environmental and energy security constraints[J]. Resources, Conservation and Recycling, 2019, 143: 17-26. [6]李萍, 谷波, 缪梦华. 废热回收型纯电动汽车热泵系统试验研究[J]. 上海交通大学学报, 2019, 53(4): 468-472. LI Ping, GU Bo, MIAO Menghua. Experimental research on waste-heat recovery heat pump system in electric vehicles[J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 468-472. [7]ZHANG Z Q, LI W Y, SHI J Y, et al. A study on electric vehicle heat pump systems in cold climates[J]. Energies, 2016, 9(11): 881. [8]许树学, 柴玉鹏, 马国远, 等. R1234yf低温制热性能的实验研究[J]. 家电科技, 2016(Sup.1): 178-181. XU Shuxue, CHAI Yupeng, MA Guoyuan, et al. Experimental research on R1234yf heating performance under low temperature[J]. China Appliance Technology, 2016(Sup.1): 178-181. [9]彭庆丰, 赵韩, 陈祥吉, 等. 电动汽车新型热泵空调系统的设计与试验研究[J]. 汽车工程, 2015, 37(12): 1467-1470. PENG Qingfeng, ZHAO Han, CHEN Xiangji, et al. Design and experimental study of novel heat pump air conditioning system for electric vehicles[J]. Automotive Engineering, 2015, 37(12): 1467-1470. [10]钱程, 谷波, 田镇, 等. 纯电动汽车双热源热泵系统性能分析[J]. 上海交通大学学报, 2016, 50(4): 569-574. QIAN Cheng, GU Bo, TIAN Zhen, et al. Performance analysis of dual source heat pump in electric vehicles[J]. Journal of Shanghai Jiao Tong University, 2016, 50(4): 569-574. [11]STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change[M]. Cambridge, UK: Cambridge University Press, 2015. [12]LI Z H, LIANG K, JIANG H Y. Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system[J]. Applied Thermal Engineering, 2019, 153: 646-654. [13]ZOU H M, HUANG G Y, SHAO S Q, et al. Experimental study on heating performance of an R1234yf heat pump system for electric cars[J]. Energy Procedia, 2017, 142: 1015-1021. [14]FENG L, HRNJAK P. Performance characteristics of a mobile heat pump system at low ambient temperature[DB/OL]. (2018-04-03)[2019-05-05]. https:∥saemobilus.sae.org/content/2018-01-0076/. [15]柴玉鹏, 马国远, 许树学, 等. R1234yf和R134a制冷及制热性能实验研究[J]. 制冷与空调(四川), 2017, 31(4): 435-440. CHAI Yupeng, MA Guoyuan, XU Shuxue, et al. Experimental research on cooling/heating performance using R1234yf and R134a[J]. Refrigeration & Air Conditioning, 2017, 31(4): 435-440. [16]SHAH M M. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 547-556. [17]WANG C C. An overview for the heat transfer performance of HFO-1234yf[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 444-453. [18]DEL COL D, TORRESIN D, CAVALLINI A. Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf[J]. International Journal of Refrigeration, 2010, 33(7): 1307-1318. [19]SAITOH S, DANG C B, NAKAMURA Y, et al. Boiling heat transfer of HFO-1234yf flowing in a smooth small-diameter horizontal tube[J]. International Journal of Refrigeration, 2011, 34(8): 1846-1853. [20]NAWAZ K, SHEN B, ELATAR A, et al. R1234yf and R1234ze(E) as low-GWP refrigerants for residential heat pump water heaters[J]. International Journal of Refrigeration, 2017, 82: 348-365. [21]周光辉, 刘亚芳, 杨凤叶, 等. 电动汽车热泵空调系统混气特性模拟实验研究[J]. 低温与超导, 2016, 44(2): 53-56. ZHOU Guanghui, LIU Yafang, YANG Fengye, et al. Simulation study on the hybrid gas characteristics of heat pump air conditioning system for electric vehicles[J]. Cryogenics & Superconductivity, 2016, 44(2): 53-56.
文章导航

/