学报(中文)

基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化

展开
  • 1. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240; 2. 中国航发商用航空发动机有限责任公司, 上海 201180; 3. 西北工业大学 超高温结构复合材料重点实验室, 西安 710072
刘海龙(1992-),男,吉林省吉林市人,硕士生,主要从事陶瓷基复合材料研究.

收稿日期: 2019-09-27

  网络出版日期: 2020-11-09

基金资助

国家自然科学基金(11272207,U1831105),上海市科学技术委员会科研计划(15DZ1161100)资助项目

Tensile Damage Evolution of Plain Weave SiC/SiC Composites Based on In-situ X-Ray CT Tests

Expand
  • 1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Aero Engine Corporation of China Commercial Aircraft Engine Co., Ltd., Shanghai 201180, China; 3. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2019-09-27

  Online published: 2020-11-09

摘要

采用化学气相渗透工艺制备平纹SiC/SiC复合材料,利用X射线CT无损检测技术研究纺织陶瓷基复合材料拉伸损伤演化与失效机理.制备了第3代SiC纤维增韧平纹叠层SiC/SiC狗骨状试件.研制了CT原位拉伸测试仪,完成了纳米X射线CT原位拉伸试验,对CT扫描三维重建图像和扫描电镜照片进行了分析.结果表明:纳米X射线CT原位试验能够揭示材料拉伸损伤演化过程.平纹SiC/SiC复合材料单轴拉伸应力-应变曲线呈现明显的非线性特征,损伤萌生于非线性变化阶段.首先,出现基体横向开裂,并随着拉力的增加逐渐扩展.其次,出现层间基体开裂和纤维束基体纵向开裂,并逐渐扩展至纤维束宽度.最后,拉伸方向纤维断裂,材料失效,大多基体横向裂纹闭合,但纵向纤维束与束间基体分离严重,断口参差不齐,有明显的纤维拔出现象.

本文引用格式

刘海龙,张大旭,祁荷音,伍海辉,郭洪宝,洪智亮,陈超,张毅 . 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020 , 54(10) : 1074 -1083 . DOI: 10.16183/j.cnki.jsjtu.2019.274

Abstract

Plain weave SiC/SiC composites were manufactured by the chemical vapor infiltration process,and X-ray computed tomography non-destructive testing technology was used to investigate the damage evolution and failure mechanism of textile ceramic matrix composites. Besides the third generation SiC fiber toughened plain weave laminated SiC/SiC dog bone test pieces were prepared. In addition, a CT in-situ tensile tester was developped, the nano in-situ X-ray CT tensile tests were completed, and the three-dimensional reconstruction images and scanning electron microscope photos of CT scans were analyzed. The results show that nano X-ray CT in-situ tests can reveal the evolution of tensile damage of materials. The uniaxial tensile stress-strain curve of plain weave SiC/SiC composites exhibits obvious nonlinear characteristics, with damage initiating in the stage of nonlinear changes. First, lateral cracking of the substrate occurs and gradually expands with increasing tensile force. Next, interlayer matrix cracking and fiber bundle matrix cracking occur longitudinally and gradually expand to the fiber bundle width. Finally, the fiber in the tensile direction breaks and the material fails. Most of the substrates have transverse cracks closed, but the longitudinal fiber bundles and the matrix between the bundles are severely separated, the fractures are uneven, and there are obvious fiber pull-outs.

参考文献

[1]张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1): 24-32. ZHANG Litong, CHENG Laifei, XU Yongdong. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology, 2003(1): 24-32. [2]高铁, 洪智亮, 杨娟. 商用航空发动机陶瓷基复合材料部件的研发应用及展望[J]. 航空制造技术, 2014(6): 14-21. GAO Tie, HONG Zhiliang, YANG Juan. Application and prospect of ceramic matrix composite components for commercial aircraft engine[J]. Aeronautical Manufacturing Technology, 2014(6): 14-21. [3]刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10. LIU Qiaomu, HUANG Shunzhou, HE Aijie. Progress in coupon tests of SiCf/SiC ceramic matrix composites used for aero engines[J]. Journal of Materials Engineering, 2019, 47(2): 1-10. [4]刘虎, 杨金华, 周怡然, 等. 国外航空发动机用SiCf/SiC复合材料的材料性能测试研究进展[J]. 材料工程, 2018, 46(11): 1-12. LIU Hu, YANG Jinhua, ZHOU Yiran, et al. Progress in coupon tests of SiCf/SiC ceramic matrix composites used for aero engine[J]. Journal of Materials Engineering, 2018, 46(11): 1-12. [5]LI Z X, GUO L X, ZHANG L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites[J]. Composites Science and Technology, 2018, 162: 101-109. [6]ZHANG D X, HAYHURST D R. Influence of applied in-plane strain on transverse thermal conductivity of 0°/90° and plain weave ceramic matrix compo-sites[J]. International Journal of Solids and Structures, 2011, 48(5): 828-842. [7]DAI J X, SHA J J, SHAO J Q, et al. In-situ growth of SiC nanostructures and their influence on anti-oxidation capability of C/SiC composites[J]. Corrosion Science, 2017, 124: 71-79. [8]杨成鹏, 矫桂琼, 王波. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度[J]. 力学学报, 2011, 43(2): 330-337. YANG Chengpeng, JIAO Guiqiong, WANG Bo. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 330-337. [9]RAJAN V P, ZOK F W. Matrix cracking of fiber-reinforced ceramic composites in shear[J]. Journal of the Mechanics and Physics of Solids, 2014, 73: 3-21. [10]赵爽, 周新贵, 余金山, 等. SiC/SiC复合材料的制备与性能研究进展[J]. 材料导报, 2013, 27(1): 66-70. ZHAO Shuang, ZHOU Xingui, YU Jinshan, et al. Research and development in fabrication and properties of SiC/SiC composites[J]. Materials Review, 2013, 27(1): 66-70. [11]倪德伟, 陈小武, 王敬晓, 等. Cf/ZrB2-ZrC-SiC超高温陶瓷基复合材料的设计、制备及性能[J]. 硅酸盐学报, 2018, 46 (12): 1661-1668. NI Dewei, CHEN Xiaowu, WANG Jingxiao, et al. Design, fabrication and properties of Cf/ZrB2-ZrC-SiC ultra-high temperature ceramic matrix composites[J]. Journal of the Chinese Ceramic Society, 2018, 46 (12): 1661-1668. [12]JIN L Z, ZHANG K, XU T T, et al. The fabrication and mechanical properties of SiC/SiC composites prepared by SLS combined with PIP[J]. Ceramics International, 2018, 44(17): 20992-20999. [13]LI T, MO J J, YU X, et al. Mechanical behavior of C/SiC composites under hypervelocity impact at di-fferent temperatures: Micro-structures, damage and mechanisms[J]. Composites Part A, 2016, 88: 19-26. [14]孟志新, 常柯, 郭旭, 等.不同纤维束下SiC陶瓷基复合材料拉伸强度及拉伸行为研究[J]. 西安航空学院学报, 2019, 37(5): 35-42. MENG Zhixin, CHANG Ke, GUO Xu, et al. Study on the tensile strength and tensile behavior of SiC ceramic matrix and composites under different fiber bundles[J]. Journal of Xi’an Aeronautical University, 2019, 37(5): 35-42. [15]代吉祥, 沙建军, 张玉翠, 等. 纤维热处理对C/C-SiC复合材料剪切强度的影响[J]. 硅酸盐学报, 2013, 41(7): 923-929. DAI Jixiang, SHA Jianjun, ZHANG Yucui, et al. Influence of carbon fiber heat treatment on interlaminar shear strength of C/C-SiC composites[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 923-929. [16]ZHANG D X, HAYHURST D R. Prediction of stress strain and fracture behaviour of an 8-harness satin weave ceramic matrix composite[J]. International Journal of Solids and Structures, 2014, 51(21-22): 3762-3775. [17]秦浩, 董绍明, 胡建宝, 等. PIP法制备SiC纳米线增强SiCf/SiC复合材料及其力学性能[J]. 硅酸盐学报, 2016, 44(10): 1532-1537. QIN Hao, DONG Shaoming, HU Jianbao, et al. Effect of sic nanowires on mechanical properties of PIP-SiCf/SiC Composites[J]. Journal of the Chinese Ceramic Society, 2016, 44(10): 1532-1537. [18]LIU Y, HUANG R, LIU R. Reaction layer microstructure of SiC/SiC joints brazed by Ag-Cu-Ti filler metal[J]. Journal of Synthetic Crystals, 2009, 38: 195-198. [19]ZHOU X G, ZHAO S, MUMMERY P, et al. Studying SiC/SiC composites by X-ray tomography[J]. Key Engineering Materials, 2014, 602-603: 416-421. [20]FENG Y J, FENG Z D, LI S W. Micro-CT characterization on porosity structure of 3D Cf/SiCm composite[J]. Composites Part A, 2011, 42(11): 1645-1650. [21]CHATEAU C, GLBART L, BORNERT M, et al. In situ X-ray microtomography characterization of damage in SiC/SiC minicomposites[J]. Composites Science and Technology, 2011, 71(6): 916-924. [22]祁荷音, 陈明明, 张大旭, 等. 基于纤维束渐进损伤性能的平纹陶瓷基复合材料拉伸力学行为预测[J]. 中国科技论文, 2018, 13 (4): 444-449. QI Heyin, CHEN Mingming, ZHANG Daxu, et al. Tensile behavior and failure mechanisms of plain weave SiC/SiC Composites at room and high temperatures[J]. China Science Paper, 2018, 13(4): 444-449. [23]LISSART N, LAMON J. Damage and fatigue in ceramic matrix minicomposites: Experimental study and model[J]. Acta Materialia, 1997, 45(3): 1025-1044. [24]SHENG Z, XIGUA G, XIAO H A, et al. Prediction of strength and constitutive response of SiC/SiC composites considering fiber failure[J]. Composites Part B: Engineering, 2019, 163: 252-259. [25]曾增, 张庆茂, 刘伟先, 等. 单向C/SiC陶瓷基复合材料基体失效机制与强度预测[J]. 复合材料学报, 2015, 32(4): 1075-1082. ZENG Zeng, ZHANG Qingmao, LIU Weixian, et al. Matrix failure mechanism and strength prediction of the UD-C/SiC ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1075-1082. [26]何宗倍, 张瑞谦, 付道贵, 等. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31. HE Zongbei, ZHANG Ruiqian, FU Daogui, et al. Tensile mechanical behavior of SiC fiber bundle reinforced composites with different interfaces[J]. Journal of Materials engineering, 2019, 47(4): 25-31. [27]WU S J, CHENG L F, ZHANG L T, et al. Thermal shock behavior of a three-dimensional SiC/SiC composite[J]. Metallurgical and Materials Transactions, 2006, 37(12): 3587-3592. [28]郭洪宝, 贾普荣, 王波, 等. 基于迟滞行为的2D-SiC/SiC复合材料组份力学性能分析[J]. 力学学报, 2015, 47(2): 260-269. GUO Hongbao, JIA Purong, WANG Bo, et al. Study on constituent properties of a 2D-SiC/SiC composite by hysteresis measurements[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 260-269. [29]JING X, YANG X G, SHI D Q, et al. Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature[J]. Ceramics International, 2017, 43(9): 6721-6729. [30]陈明明, 陈秀华, 张大旭, 等. 平纹叠层SiC/SiC复合材料室温和高温拉伸行为与破坏机理[J]. 上海交通大学学报, 2019, 53(1): 11-18. CHEN Mingming, CHEN Xiuhua, ZHANG Daxu, et al. Tensile behavior and failure mechanisms of plain weave SiC/SiC Composites at room and high temperatures[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 11-18. [31]BALE H, BLACKLOCK M, BEGLEY M R, et al. Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography[J]. Journal of the American Ceramic Society, 2012, 95(1): 392-402. [32]成来飞, 张立同, 梅辉, 等. 化学气相渗透工艺制备陶瓷基复合材料[J]. 上海大学学报(自然科学版), 2014, 20(1): 15-32. CHENG Laifei, ZHANG Litong, MEI Hui, et al. Manufacturing of CMCs by chemical vapor infiltration process[J]. Journal of Shanghai University (Natural Science), 2014, 20(1): 15-32.
文章导航

/