学报(中文)

拓宽大涵道比风扇稳定运行范围的叶片优化设计

展开
  • 上海交通大学 a. 机械与动力工程学院; b. 燃气轮机与民用航空发动机教育部 工程研究中心, 上海 200240
张科(1995-),男,山东省潍坊市人,硕士生,主要从事大涵道比风扇叶片优化设计等研究.

收稿日期: 2019-05-12

  网络出版日期: 2020-11-09

基金资助

国防基础科研计划(B1420110136),上海市自然科学基金(18ZR1418600)资助项目

Blade Optimization Design for Expanding Stable Operating Range of High Bypass Ratio Fan

Expand
  • a. School of Mechanical Engineering; b. Engineering Research Center of Gas Turbine and Civil Aero Engine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-05-12

  Online published: 2020-11-09

摘要

基于Kriging代理模型构建了针对大涵道比涡扇发动机风扇叶片的气动优化设计方法,集成了参数化建模、TurboGrid网格划分和计算流体力学(CFD)组合优化技术.以风扇叶片的各叶高截面叶型为优化对象,进行基于叶片安装角扭转和最大厚度位置移动的叶型重构.选取失速点流量作为目标函数,对风扇叶片稳定运行范围进行评估并优化.与原叶片相比,优化叶片的稳定运行范围拓宽10.1%,且在稳定运行范围中表现出更高的性能.效率和压力系数的最大增幅分别为2.63%和9.27%,表明优化过程有效地拓宽了风扇叶片的稳定工作范围,并大幅提高了效率和总压升等性能指标.

本文引用格式

张科, 吴亚东 . 拓宽大涵道比风扇稳定运行范围的叶片优化设计[J]. 上海交通大学学报, 2020 , 54(10) : 1024 -1034 . DOI: 10.16183/j.cnki.jsjtu.2019.130

Abstract

An aerodynamic optimization design method for high bypass ratio fan blades based on the Kriging surrogate model was constructed, which integrated parametric modeling, TurboGrid meshing, and computational fluid dynamics (CFD) combined optimization technology. The optimization method was implemented for airfoils at several spans of a fan blade and redesign of airfoils from blade setting angle rotating and maximum-thickness position moving. The mass flow at stall points was chosen as target function to evaluate and optimize the stable operating range of fan blade. Compared with prototype design, the stable operating range of the blade optimized was expanded by 10.1%, among which the aerodynamic performance was also enhanced, with a maximum increment of 2.63% for efficiency and 9.27% for pressure coefficient. The results show that the optimization design system has broadened the stable operating range of fan blade effectively, and has also substantially improved efficiency and total pressure rise.

参考文献

[1]SONG Peng, SUN Jinju. Blade shape optimization for transonic axial flow fan[J]. Journal of Mechanical Science and Technology, 2015, 29(3): 931-938. [2]ABADI S M, AHMADPOUR A, MEYER J P, et al. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows[J]. Applied Thermal Engineering, 2017, 112(2): 1575-1589. [3]ADEEB E, MAQSOOD A, MUSTHAQ A, et al. Comparison of airfoil precomputational analysis methods for optimization of wind turbine blades[J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1081-1088. [4]CHAN C M, BAI H L, HE D Q. Blade shape optimization of the Savonius wind turbine using a genetic algorithm[J]. Applied Energy, 2018, 213(3): 148-157. [5]SANGER N L. The use of optimization techniques to design controlled diffusion compressor blading[J]. Journal of Engineering for Power, 1983, 105: 256-265. [6]ADEEB E, MAQSOOD A, MUSTHAQ A, et al. Parametric study and optimization of ceiling fan blades for improved aerodynamic performance[J]. Journal of Applied Fluid Mechanics, 2016, 9(6): 2905-2916. [7]OYAMA A, LIOU M S, OBAYASHI S. Multi-point design optimization of a high bypass ratio fan blade[C]. 30th Congress of the International Council of the Aeronautical Sciences. Daejeon, Korea: ICAS, 2016: 25-30. [8]TREPANIER J Y, LUPIEN A, TRIBES C, et al. A 3d parameterization for transonic fan blade multidisciplinary design[J]. Aeronautics and Aerospace Open Access Journal, 2017, 1(1): 31-39. [9]脱伟, 熊劲松, 侯安平, 等. 遗传算法在多级压气机气动优化设计中的应用[J]. 航空动力学报, 2007, 22(2): 305-309. TUO Wei, XIONG Jinsong, HOU Anping, et al. Application of genetic algorithm to multi-stage compressor aerodynamic optimization design[J]. Journal of Aerospace Power, 2007, 22(2): 305-309. [10]孙俊峰, 刘刚, 江雄, 等. 基于Kriging模型的旋翼翼型优化设计研究[J]. 空气动力学学报, 2013, 31(4): 437-441. SUN Junfeng, LIU Gang, JIANG Xiong, et al. Research of rotor airfoil design optimization based on the Kriging model[J]. Acta Aerodynamica Sinica, 2013, 31(4): 437-441. [11]张金环, 周正贵, 周旭. 大涵道比风扇叶片气动优化设计[J]. 航空动力学报, 2017, 32(1): 239-247. ZHANG Jinhuan, ZHOU Zhenggui, ZHOU Xu. Aerodynamic optimization design of high bypass ratio fan blades[J]. Journal of Aerospace Power, 2017, 32(1): 239-247. [12]高星, 刘宝杰. 高比转速斜流叶轮根尖加功量分配的影响分析[J]. 工程热物理学报, 2008, 9(4): 1475-1478. GAO Xing, LIU Baojie. Effects of circulation spanwise distribution on high specific speed mixed-flow impellers[J]. Journal of Engineering Thermophysics, 2008, 9(4): 1475-1478. [13]韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. HAN Zhonghua. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225. [14]王元, 方开泰. 关于均匀分布与试验设计(数论方法)[J]. 科学通报, 1981, 26(2): 65-70. WANG Yuan, FANGKaitai. About uniform distribution and experimental design (number theory method)[J]. Chinese Science Bulletin, 1981, 26(2): 65-70.
文章导航

/