基于Wirtinger型积分不等式的线性时滞广义系统稳定性准则
收稿日期: 2020-05-25
网络出版日期: 2020-10-10
基金资助
国家自然科学基金项目(31700478);南京林业大学青年科技创新基金项目(CX2017032)
Stability Criteria of Linear Time-Delay Singular Systems Based on Wirtinger-Type Integral Inequality
Received date: 2020-05-25
Online published: 2020-10-10
为研究线性时滞广义系统的渐近稳定性问题,利用时滞分割法均匀分割时滞区间,构造包含多重积分的Lyapunov-Krasovskii泛函以充分利用各子区间的时滞信息,并利用改进的Wirtinger型积分不等式估计泛函导函数的更紧上界,进而建立判定系统渐近稳定的时滞相关充分条件.最后,通过对比3个数值算例的仿真结果,证明了方法的有效性和先进性.
关键词: 时滞广义系统; 渐近稳定; Wirtinger型积分不等式; 线性矩阵不等式
朱金梁, 王婷, 李涛 . 基于Wirtinger型积分不等式的线性时滞广义系统稳定性准则[J]. 上海交通大学学报, 2020 , 54(9) : 967 -972 . DOI: 10.16183/j.cnki.jsjtu.2020.147
Aimed at the asymptotic stability of linear time-delay singular system,the time-delay interval was evenly divided by using the time-delay division method, and a Lyapunov-Krasovskii functional (LKF) with multiple integral terms was constructed to effectively utilize the time-delay information of each sub-interval. Next, some improved Wirtinger-type integral inequalities were employed to estimate the LKF derivative and obtain a tighter estimation. Then, delay-dependent sufficient conditions were established to ensure the asymptotic stability of the addressed system. Finally, by using three numerical examples, comparisons and simulations were presented to illustrate the efficiency and superiority of the proposed method.
[1] | RICHARD J P. Time-delay systems: An overview of some recent advances and open problems[J]. Automatica, 2003,39(10):1667-1694. |
[2] | HIEN L V, TRINH H. An enhanced stability criterion for time-delay systems via a new bounding technique[J]. Journal of the Franklin Institute, 2015,352(10):4407-4422. |
[3] | ZENG H B, HE Y, WU M, et al. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2015,60(10):2768-2772. |
[4] | ZENG H B, HE Y, WU M, et al. New results on stability analysis for systems with discrete distributed delay[J]. Automatica, 2015,60:189-192. |
[5] | PARK P, LEE W I, LEE S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[J]. Journal of the Franklin Institute, 2015,352(4):1378-1396. |
[6] | CHENG J, WANG H L, CHEN S Q, et al. Robust delay-derivative-dependent state-feedback control for a class of continuous-time system with time-varying delays[J]. Neurocomputing, 2016,173:827-834. |
[7] | XU H T, ZHANG C K, JIANG L, et al. Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional[J]. Applied Mathematical Modelling, 2017,45:955-964. |
[8] | SHAO H Y, ZHANG Z Q. Delay-dependent state feedback stabilization for a networked control model with two additive input delays[J]. Applied Mathematics and Computation, 2015,265:748-758. |
[9] | HUI J J, KONG X Y, ZHANG H X, et al. Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations[J]. Journal of Computational and Applied Mathematics, 2015,281:74-81. |
[10] | ZHANG Z Y, LIN C, CHEN B. Complete LKF approach to stabilization for linear systems with time-varying input delay[J]. Journal of the Franklin Institute, 2015,352(6):2425-2440. |
[11] | DING L M, HE Y, WU M, et al. Improved mixed-delay-dependent asymptotic stability criteria for neutral systems[J]. IET Control Theory and Applications, 2015,9(14):2180-2187. |
[12] | 张涛, 邵诚, 崔艳秋. 区间时变时滞系统的时滞相关稳定性分析[J]. 电光与控制, 2015,22(1):45-47. |
[12] | ZHANG Tao, SHAO Cheng, CUI Yanqiu. Research on delay-dependent stability for systems with interval time-varying delay[J]. Electronics Optics & Control, 2015,22(1):45-47. |
[13] | DAI L Y. Singular control systems[M]. Berlin/Heidelberg: Springer-Verlag, 1989. |
[14] | XU S Y, VAN DOOREN P, STEFAN R, et al. Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J]. IEEE Transactions on Automatic Control, 2002,47(7):1122-1128. |
[15] | DING Y C, ZHONG S M, CHEN W F. A delay-range-dependent uniformly asymptotic stability criterion for a class of nonlinear singular systems[J]. Nonlinear Analysis: Real World Applications, 2011,12(2):1152-1162. |
[16] | JIAO J M. Delay-dependent stability criteria for singular systems with interval time-varying delay[J]. Mathematical Problems in Engineering, 2012,2012:1-16. |
[17] | 龚冠桦, 赵南, 刘臻臻, 等. 基于Park积分不等式线性时滞广义系统稳定性分析[J]. 青岛大学学报(工程技术版), 2017,32(2):17-21. |
[17] | GONG Guanhua, ZHAO Nan, LIU Zhenzhen, et al. New stability analysis of linear singular systems with time delays based on park’s integral inequality[J]. Journal of Qingdao University (Engineering & Technology Edition), 2017,32(2):17-21. |
[18] | 马跃超, 张雨桐, 付磊. 奇异时滞系统的量化容错控制[J]. 郑州大学学报(理学版), 2019,51(4):110-115. |
[18] | MA Yuechao, ZHANG Yutong, FU Lei. Quantized and fault-tolerant control for singular time-delay systems[J]. Journal of Zhengzhou University (Natural Science Edition), 2019,51(4):110-115. |
[19] | PARK M, KWON O, PARK J H, et al. Stability of time-delay systems via Wirtinger-based double integral inequality[J]. Automatica, 2015,55:204-208. |
[20] | 李郅辰. 基于积分不等式的时滞系统稳定性分析和控制[D]. 北京: 华北电力大学, 2017. |
[20] | LI Zhichen. Stability analysis and control for time-delay systems based on integral inequalities[D]. Beijing: North China Electric Power University, 2017. |
/
〈 |
|
〉 |