动力定位辅助锚泊定位船有限时间观测器设计
收稿日期: 2019-03-23
网络出版日期: 2020-08-18
基金资助
国家自然科学基金资助项目(51609046);中央高校基金资助项目(HEUCFM170403);第七代超深水钻井平台(船)创新专项经费资助项目
Finite-Time Observer Design for Dynamic Positioning Assisted Mooring Positioning Ship
Received date: 2019-03-23
Online published: 2020-08-18
针对船舶动力定位辅助锚泊定位(DPM)系统中速度不可测和外部扰动不确定的问题,基于传统的状态观测器的设计了一种有限时间状态观测器(FTSO),所提观测器可以同时对船舶速度和外部扰动进行估计.在船舶的建模过程中考虑了系统中的未建模动态项,并根据建立的数学模型给出了所提观测器的数学表达式.利用矩阵不等式、齐次理论和Lyapunov稳定性理论等证明了该有限时间观测器是半全局有限时间稳定的.对所提观测器进行了仿真验证,并与传统的状态观测器进行了对比实验,仿真结果表明所提观测器具有更快的收敛速度和更好的抗干扰性.
关键词: 动力定位辅助锚泊定位系统; 速度不可测; 外部扰动; 有限时间状态观测器; 有限时间稳定
夏国清, 刘彩云, 陈兴华 . 动力定位辅助锚泊定位船有限时间观测器设计[J]. 上海交通大学学报, 2020 , 54(8) : 849 -855 . DOI: 10.16183/j.cnki.jsjtu.2019.084
In response to the problem of unmeasurable velocity and uncertain external disturbances of the dynamic positioning assisted mooring positioning (DPM) system of the ship, a finite-time observer based on the traditional state observer to estimate the velocity and external disturbances is proposed. The unmodelled dynamic items in the system are considered in the modelling process of the ship. Based on the dynamics model, the mathematical expression of the finite-time observer is given. It is proved that the proposed finite-time observer is semi-global finite-time stable by using matrix inequality, homogeneous, and the Lyapunov stability theory. The observer is simulated and compared with the traditional state observer in order to justify that the proposed finite-time observer has a faster convergence and a better disturbance rejection.
[1] | REN Z, SKJETNE R, HASSANI V . Supervisory control of line breakage for thruster-assisted position mooring system[J]. IFAC-PapersOnLine, 2015,48(16):235-240. |
[2] | 雷正玲, 郭晨, 刘正江 . 船舶锚泊辅助动力定位的抗扰控制[J]. 哈尔滨工程大学学报, 2015,1(36):24-28. |
[2] | LEI Zhengling, GUO Chen, LIU Zhengjiang . Disturbance rejection control over ship thruster-assisted mooring positioning[J]. Journal of Harbin Engineering University, 2015,1(36):24-28. |
[3] | JAYASIRI A, NANDAN A, IMTIAZ S , et al. Dynamic positioning of vessels using a UKF-based observer and an NMPC-based controller[J]. IEEE Transactions on Automation Science and Engineering, 2017,14(4):1778-1785. |
[4] | DING H, FENG H, XU H . An adaptive unscented Kalman filter for tracking sudden environmental forces changes in dynamic positioning system[J]. Journal of Ship Mechanics, 2017,21(6):711-721. |
[5] | 苏义鑫, 赵俊, 张华军 . 带有UKBF的船舶动力定位预测控制器设计[J]. 西南交通大学学报, 2018,53(3):589-594. |
[5] | SU Yixin, ZHAO Jun, ZHANG Huajun . Predictive controller with UKBF for marine dynamic positioning system[J]. Journal of Southwest Jiaotong University, 2018,53(3):589-594. |
[6] | WANG Y, TUO Y, YANG S X , et al. Reliability-based robust dynamic positioning for a turret-moored floating production storage and offloading vessel with unknown time-varying disturbances and input saturation.[J]. Isa Transactions, 2018,78:66-79. |
[7] | 黄成, 王岩 . 交会对接模拟系统姿态跟踪有限时间抗干扰控制[J]. 控制与决策, 2017,32(7):1189-1195. |
[7] | HUANG Cheng, WANG Yan . Finite-time active disturbance rejection attitude tracking control for rendezvous and docking simulator[J]. Control and Decision, 2017,32(7):1189-1195. |
[8] | XIA G, SUN C, ZHAO B , et al. Cooperative control of multiple dynamic positioning vessels with input saturation based on finite-time disturbance observer[J]. International Journal of Control, Automation and Systems, 2019,17(2):370-379. |
[9] | SU Y, ZHENG C . Robust finite-time output feedback control of perturbed double integrator[J]. Automatica, 2015,60:86-91. |
[10] | ZOU A M, DE RUITER A H J, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016,67:46-53. |
[11] | KUMAR P R, BEHERA A K, BANDYOPADHYAY B . Robust finite-time tracking of stewart platform: A super-twisting like observer-based forward kinematics solution[J]. IEEE Transactions on Industrial Electronics, 2017,64(5):3776-3785. |
[12] | HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge, U.K.: Cambridge Univ. Press, 1952. |
[13] | BHAT S P, BERNSTEIN D S . Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals & Systems, 2005,17(2):101-127. |
[14] | ZOU A . Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology, 2014,22(1):338-345. |
[15] | 付明玉, 张爱华, 徐金龙 . 船舶轨迹跟踪半全局一致指数稳定观测控制器[J]. 控制与决策, 2013,28(6):920-924. |
[15] | FU Mingyu, ZHANG Aihua, XU Jinlong . Semi-global uniform exponential stable observer-controller for trajectory tracking of ships[J]. Control and Decision, 2013,28(6):920-924. |
[16] | FU M, YU L . Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances[J]. Ocean Engineering, 2018,159:219-227. |
/
〈 |
|
〉 |