楔形体入水的时间解析-粒子图像测速测试及数值研究
收稿日期: 2019-03-06
网络出版日期: 2020-08-18
基金资助
国家自然科学基金(41176074);国家自然科学基金(51209048);国家自然科学基金(51409063);装备预先研究项目(41407010501)
Time-Resolved PIV Measurements and Numerical Study of Water Entry of a Wedge
Received date: 2019-03-06
Online published: 2020-08-18
为了研究楔形体入水问题以及基于粒子图像测速(PIV)进行砰击压力间接评估的可行性,应用时间解析PIV(TR-PIV)技术对不同底升角楔形体入水过程中的流场进行测试.开展相应的数值模拟,依据PIV结果进行瞬时砰击压力重构.详细分析了入水过程中的运动响应与流场结构,探讨了基于TR-PIV压力重构方案的准确性和适用性.结果表明:楔形体入水流场的TR-PIV测试结果与数值结果吻合良好.对于不同网格间距和时间步长,压力重构方案均具有良好的精确性.基于TR-PIV重构不同底升角楔形体的砰击压力场结果与数值结果吻合良好,砰击载荷的评估结果同样吻合良好.
佘文轩, 郭春雨, 周广利, 吴铁成, 徐鹏 . 楔形体入水的时间解析-粒子图像测速测试及数值研究[J]. 上海交通大学学报, 2020 , 54(8) : 839 -848 . DOI: 10.16183/j.cnki.jsjtu.2019.065
In order to study the wedge water entry problem and the feasibility of indirect evaluation of the slamming pressure based on particle image velocimetry (PIV), tests were conducted on the water entry of wedges at different deadrise angles using time-resolved PIV (TR-PIV). A numerical simulation was performed, and the transient pressure was reconstructed based on the PIV results. The motion response and flow field structure in the process of entering the water were analyzed in detail, and the accuracy and applicability of the pressure reconstruction scheme based TR-PIV were discussed. The results show that a good agreement is observed in TR-PIV measurements of the water entry and the numerical results. For different grid spacings and time steps, the pressure reconstruction scheme always has a good accuracy. The results of the slamming pressure field reconstruction of the wedges at different deadrise angles based on TR-PIV agree well with the numerical results, so do the evaluation results of the slamming load.
Key words: wedge; water entry; time-resolved PIV (TR-PIV); pressure reconstruction
[1] | ABRATE S. Hull slamming[J]. Applied Mechanics Reviews, 2011,64(6):1-35. |
[2] | WAGNER H. über sto-und gleitvorgnge an der oberflche von flüssigkeiten[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1932,12(4):193-215. |
[3] | ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993,246:593-612. |
[4] | WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004,19(3):277-289. |
[5] | SUN S Y, SUN S L, WU G X. Oblique water entry of a wedge into waves with gravity effect[J]. Journal of Fluids and Structures, 2015,52:49-64. |
[6] | 卢炽华, 何友声, 王刚. 船体砰击问题的非线性边界元分析[J]. 水动力学研究与进展( A辑), 1999,14(2):169-175. |
[6] | LU Chihua, HE Yousheng, WANG Gang. Ship hull slamming analysis by using nonlinear boundary element method[J]. Journal of Hydrodynamics (Ser. A), 1999,14(2):169-175. |
[7] | WANG J, LUGNI C, FALTINSEN O M. Experimental and numerical investigation of a freefall wedge vertically entering the water surface[J]. Applied Ocean Research, 2015,51:181-203. |
[8] | 骆寒冰, 董德龙, 季红叶, 等. 基于ALE算法的无转角和有转角铝制加筋板楔形体水弹性砰击的数值模拟研究[J]. 船舶力学, 2017,21(2):175-183. |
[8] | LUO Hanbing, DONG Delong, JI Hongye, et al. Numerical investigation of hydroelastic impact on one free-drop wedge with aluminum stiffened panels considering roll angles using ALE algorithm[J]. Journal of Ship Mechanics, 2017,21(2):175-183. |
[9] | DONG C, SUN S, SONG H, et al. Numerical and experimental study on the impact between a free falling wedge and water[J]. International Journal of Naval Architecture and Ocean Engineering, 2019,11(1):233-243. |
[10] | PANCIROLI R, ABRATE S, MINAK G, et al. Hydroelasticity in water-entry problems: Comparison between experimental and SPH results[J]. Composite Structures, 2012,94(2):532-539. |
[11] | 谢行, 任慧龙, 邓宝利, 等. 基于VOF的非对称剖面自由入水数值模拟[J]. 华中科技大学学报 (自然科学版), 2019,47(1):127-132. |
[11] | XIE Hang, REN Huilong, DENG Baoli, et al. Numerical simulation of freefall water entry of asymme-trical section based on VOF method[J]. Journal of Huazhong University of Science and Technology, 2019,47(1):127-132. |
[12] | RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: A practical guide[M]. 2nd ed. Germany: Springer, 2018: 1-11. |
[13] | 张志荣, 洪方文, 张军, 等. 入水初期流场的测量方法[J]. 水动力学研究与进展, 2001,16(3):274-278. |
[13] | ZHANG Zhirong, HONG Fangwen, ZHANG Jun, et al. The method of measuring initial flow field induced by water entry[J]. Journal of Hydrodynamics, 2001,16(3):274-278. |
[14] | NILA A, VANLANDUIT S, VEPA S, et al. High speed particle image velocimetry measurements during water entry of rigid and deformable bodies[C]// Proceedings of the 16th International Symposium on App-lications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal: Springer, 2012: 1-11. |
[15] | OUDHEUSDEN B W. PIV-based pressure measurement[J]. Measurement Science and Technology, 2013,24(3):1-32. |
[16] | 刘顺, 徐惊雷, 俞凯凯. 基于PIV技术的压力场重构算法实现与研究[J]. 实验流体力学, 2016,30(4):56-65. |
[16] | LIU Shun, XU Jinglei, YU Kaikai. Implementation and research on the reconstruction algorithms of pre-ssure fields based on PIV[J]. Journal of Experiments in Fluid Mechanics, 2016,30(4):56-65. |
[17] | NILA A, VANLANDUIT S, VEPA S, et al. A PIV-based method for estimating slamming loads during water entry of rigid bodies[J]. Measurement Science and Technology, 2013,24(4):1-12. |
[18] | PANCIROLI R, PORFIRI M. Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry[J]. Experiments in Fluids, 2013,54(12):1-13. |
[19] | JALALISENDI M, ZHAO S, PORFIRI M. Shallow water entry: Modeling and experiments[J]. Journal of Engineering Mathematics, 2017,104(1):131-156. |
[20] | SUGII Y, NISHIO S, OKUNO T, et al. A highly accurate iterative PIV technique using a gradient method[J]. Measurement Science and Technology, 2000,11(12):1666-1673. |
[21] | LIU X, KATZ J. Instantaneous pressure and material acceleration measurements using a four-exposure PIV system[J]. Experiments in Fluids, 2006,41(2):227-240. |
/
〈 |
|
〉 |