基于T-S模糊故障树和贝叶斯网络的隧道坍塌易发性评价

展开
  • 1.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室, 武汉 430071
    2.中国科学院大学, 北京100049
    3.山东省交通规划设计院, 济南 250031
陈 舞(1994-),男,江西省萍乡市人,博士生,现主要从事隧道安全风险评价方法方面的研究

收稿日期: 2019-01-14

  网络出版日期: 2020-08-18

基金资助

国家自然科学基金重点项目(41731284);国家自然科学基金面上项目(51579235);国家自然科学基金面上项目(41472288)

Evaluation of Tunnel Collapse Susceptibility Based on T-S Fuzzy Fault Tree and Bayesian Network

Expand
  • 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Shandong Provincial Communication Planning and Design Institute, Jinan 250031, China

Received date: 2019-01-14

  Online published: 2020-08-18

摘要

坍塌是钻爆法隧道施工过程中常见的灾害事故之一.为了有效预防坍塌事故,为隧道施工安全风险分析和管理提供决策依据,将T-S模糊故障树和贝叶斯网络进行互补融合,提出了一种基于两者的钻爆法施工隧道坍塌可能性评价方法.根据T-S模糊故障树向贝叶斯网络转化的方法来确定贝叶斯网络模型和条件概率表;利用模糊数和模糊子集分别描述节点的故障状态和故障概率;运用贝叶斯网络双向推理算法进行计算.该方法可以利用根节点的故障概率模糊子集和施工中实际故障状态两种不同的正向推理方式计算隧道坍塌可能性,并且可以依据根节点的重要度分析结果排查故障,同时可以通过反向推理计算根节点的后验概率诊断故障.两个工程实例的应用结果表明,该方法能够科学、合理地评价隧道坍塌的可能性并确定关键致险因子,可作为隧道施工安全保障和管理的决策工具.

本文引用格式

陈舞, 王浩, 张国华, 王成汤, 钟国强 . 基于T-S模糊故障树和贝叶斯网络的隧道坍塌易发性评价[J]. 上海交通大学学报, 2020 , 54(8) : 820 -830 . DOI: 10.16183/j.cnki.jsjtu.2020.99.011

Abstract

Collapse is one of the common disasters in the process of drilling and blasting tunnel construction. In order to effectively prevent the collapse accident and provide decision-making basis for safety risk analysis and management of tunnel construction, the T-S fuzzy fault tree and Bayesian network were combined, and an evaluation method based on both of them was proposed to calculate tunnel collapse possibility. According to the transformation of T-S fuzzy fault tree to Bayesian network, the Bayesian network model and conditional probability table were determined. In addition, fuzzy number and fuzzy subset were used to describe the fault state and probability of nodes respectively, and the bidirectional reasoning algorithm of Bayesian network was used to calculate. This method can use two different forward inferences to calculate the possibility of tunnel collapse, including the fuzzy subset of root node fault probability and the actual fault state in construction. At the same time, it can check the fault according to the result of importance analysis of root nodes, and can calculate the posterior probability of fault diagnosis of root nodes by back inference. Finally, the application of two engineering examples shows that the method can scientifically evaluate the possibility of tunnel collapse and determine key risk factors. This method can be used as a decision-making tool for tunnel construction safety assurance and management.

参考文献

[1] 陈洁金, 周峰, 阳军生, 等. 山岭隧道塌方风险模糊层次分析[J]. 岩土力学, 2009,30(8):2365-2370.
[1] CHEN Jiejin, ZHOU Feng, YANG Junsheng, et al. Fuzzy analytic hierarchy process for risk evaluation of collapse during construction of mountain tunnel[J]. Rock and Soil Mechanics, 2009,30(8):2365-2370.
[2] 周峰. 山岭隧道塌方风险模糊层次评估研究[D]. 长沙: 中南大学, 2008.
[2] ZHOU Feng. Fuzzy level assessment of collapse risk in mountain tunnel[D]. Changsha: Central South University, 2008.
[3] 王燕, 黄宏伟, 薛亚东. 钻爆法施工隧道塌方风险分析[J]. 沈阳建筑大学学报(自然科学版), 2009,25(1):23-27.
[3] WANG Yan, HUANG Hongwei, XUE Yadong. Risk analysis of tunnel collapse in drilling and blasting construction tunnel[J]. Journal of Shenyang Jianzhu University (Natural Science), 2009,25(1):23-27.
[4] 周建昆, 吴坚. 岩石公路隧道塌方风险事故树分析[J]. 地下空间与工程学报, 2008,4(6):991-998.
[4] ZHOU Jiankun, WU Jian. Fault tree analysis of the collapse risk in rock highway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2008,4(6):991-998.
[5] 南宇宏, 赵颂, 羊正茂. 基于事故树的隧道塌方风险评估[J]. 筑路机械与施工机械化, 2017,34(7):106-110.
[5] NAN Yuhong, ZHAO Song, YANG Zhengmao. Risk assessment of tunnel collapse based on fault tree analysis[J]. Road Machinery & Construction Mechanization, 2017,34(7):106-110.
[6] 李梓源, 王海亮, 张旭阳, 等. 小径距浅埋隧道塌方成因事故树分析[J]. 安全与环境工程, 2017,24(1):158-161.
[6] LI Ziyuan, WANG Hailiang, ZHANG Xuyang, et al. FEA on the collapse cause of small-diameter and shallow-buried tunnels[J]. Safety and Environmental Engineering, 2017,24(1):158-161.
[7] 宋华, 张洪钺, 王行仁. T-S模糊故障树分析方法[J]. 控制与决策, 2005,20(8):854-859.
[7] SONG Hua, ZHANG Hongyue, WANG Xingren. Fuzzy fault tree analysis based on T-S model[J]. Control and Decision, 2005,20(8):854-859.
[8] 姚成玉, 张荧驿, 王旭峰, 等. T-S模糊故障树重要度分析方法[J]. 中国机械工程, 2011,22(11):1261-1268.
[8] YAO Chengyu, ZHANG Yingyi, WANG Xufeng, et al. Importance analysis method of fuzzy fault tree based on T-S model[J]. China Mechanical Enginee-ring, 2011,22(11):1261-1268.
[9] 罗彦斌, 陈建勋, 王梦恕. 基于T-S模糊故障树理论的公路隧道冻害分析方法[J]. 北京交通大学学报, 2012,36(4):55-60.
[9] LUO Yanbin, CHEN Jianxun, WANG Mengshu. Method for analyzing the highway tunnel freeze injury based on the T-S fuzzy fault tree theory[J]. Journal of Beijing Jiaotong University, 2012,36(4):55-60.
[10] 付大伟. 基于贝叶斯网络汽车起重机液压系统可靠性分析[D]. 太原: 太原科技大学, 2016.
[10] FU Dawei. Reliability analysis of hydraulic system of truck crane based on Bayesian network[D]. Taiyuan: Taiyuan University of Science and Technology, 2016.
[11] SCHUBERT M, H?J N P, RAGN?Y A, 等. Risk assessment of road tunnels using bayesian networks[J]. Procedia Social and Behavioral Sciences, 2012,48(2307):2697-2706.
[12] SOUSA R L, EINSTEIN H H. Risk analysis during tunnel construction using Bayesian networks: Porto Metro case study[J]. Tunnelling and Underground Space Technology, 2011,27(1):86-100.
[13] WILSON A G, HUZURBAZAR A V. Bayesian networks for multilevel system reliability[J]. Reliability Engineering & System Safety, 2007,92(10):1413-1420.
[14] KHAKZAD N, KHAN F, AMYOTTE P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches[J]. Reliability Engineering & System Safety, 2011,96(8):925-932.
[15] 李盼, 樊建春, 刘书杰. 基于故障树与贝叶斯网络的钻井井塌事故的定量分析[J]. 中国安全生产科学技术, 2014,10(1):143-149.
[15] LI Pan, FAN Jianchun, LIU Shujie. Quantitative analysis of borehole collapse in drilling base on fault tree analysis and Bayesian networks[J]. Journal of Safety Science and Technology, 2014,10(1):143-149.
[16] 侯本申. 浅埋隧道全封闭喷涂防水体系及其可靠性研究[D]. 成都: 西南交通大学, 2017.
[16] HOU Benshen. Research on fuzzy enclosed spraying waterproof system and reability of shallowtunnel[D]. Chengdu: Southwest Jiao Tong University, 2017.
[17] 陆莹, 李启明, 周志鹏. 基于模糊贝叶斯网络的地铁运营安全风险预测[J]. 东南大学学报(自然科学版), 2010,40(5):1110-1114.
[17] LU Ying, LI Qiming, ZHOU Zhipeng. Safety risk prediction of subway operation based on fuzzy Bayesian network[J]. Journal of Southeast University (Na-tural Science Edition), 2010,40(5):1110-1114.
[18] SUN J, LIU B, CHU Z, et al. Tunnel collapse risk assessment based on multistate fuzzy Bayesian networks[J]. Quality & Reliability Engineering International, 2018,34(8):1646-1662.
[19] ZHANG L, WU X, QIN Y, et al. Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage[J]. Risk Ana-lysis, 2015,36(2):278.
[20] 戚珩, 李光, 姜晨, 等. 基于贝叶斯网络的复杂系统多态可靠性分析[J]. 现代制造工程, 2014,12(1):92-96.
[20] QI Heng, LI Guang, JIANG Chen, et al. Reliability analysis of multi-state system based on Beyssian networks[J]. Modern Manufacturing Engineering, 2014,12(1):92-96.
[21] 何立华, 魏琪, 李奕睿. 基于故障树和贝叶斯网络的建筑施工火灾风险评价[J]. 工程管理学报, 2017,31(5):107-111.
[21] HE Lihua, WEI Qi, LI Yirui. Fire risk asseement of building construction based on fault tree and Bayesian network[J]. Journal of Engineering Management, 2017,31(5):107-111.
[22] ROLLóN E, LARROSA J. Bucket elimination for multiobjective optimization problems[J]. Journal of Heuristics, 2006,12(4/5):307-328.
[23] 姚成玉, 陈东宁, 王斌. 基于T-S故障树和贝叶斯网络的模糊可靠性评估方法[J]. 机械工程学报, 2014,50(2):193-201.
[23] YAO Chengyu, CHEN Dongning, WANG Bin. Fuzzy reliability assessment method based on T-S fault tree and Bayesian network[J]. Journal of Mechanical Engineering, 2014,50(2):193-201.
[24] ESKESEN S, TENGBORG P, KAMPMANN J, et al. Guidelines for tunnelling risk management: International Tunnelling Association, Working Group No. 2[J]. Tunnelling and Underground Space Technology, 2004,19(3):217-237.
文章导航

/