新人造肛门括约肌系统充电模块热分析与控制
收稿日期: 2019-06-28
网络出版日期: 2020-08-18
基金资助
上海市科技支撑项目(19441910600);上海市科技支撑项目(19441913800);国家自然科学基金项目(6167327181601631)
Thermal Analysis and Control of Transcutaneous Energy Transfer Modulus of Puborectalis-Like Artificial Anal Sphincter
Received date: 2019-06-28
Online published: 2020-08-18
仿耻骨式人造肛门括约肌系统(PAAS)采用经皮能量传输(TET)为集成在充电模块内部的锂电池进行充电,使系统可长期稳定地在活体内工作.很多体内实验表明,无线充电过程中产生的大量热量对PAAS植入后充电模块附近活体组织的生物安全性不利,故需对无线充电过程进行合理规划.本文通过分析充电模块内部各组件的热传导关系,建立充电模块内部热阻模型,并利用体外实验对该模型进行验证及修正,经修正后的模型可以可靠地描述充电过程中活体组织温度变化情况.基于修正后的模型,本文制定了体内实验过程中单次最大连续无线充电时间,从而提高体内实验中PAAS的生物安全性,进而延长PAAS植入时间.
周泽润, 颜国正, 王志武, 华芳芳, 姚盛健, 丁紫凡 . 新人造肛门括约肌系统充电模块热分析与控制[J]. 上海交通大学学报, 2020 , 54(8) : 813 -819 . DOI: 10.16183/j.cnki.jsjtu.2019.188
The puborectalis-like artificial anal sphincter system (PAAS) uses transuctaneous energy transmission (TET) to charge lithium batteries integrated within the charging module. Therefore, the system can work stably during in-vivo experiments for a long period of time. Massive in-vivo experiments show that the large amount of heat generated in the wireless charging process is unfavorable to the biological safety of the living tissue near the charging module after PAAS implantation, so it is necessary to reasonably plan the wireless charging process. In this paper, by analyzing the heat conduction relationship of the internal components of the charging module, the internal thermal resistance model of the charging module is established, verified, and modified by in-vitro experiments. The modified model can reliably describe the temperature changes of the living tissue during charging. Based on the modified model, this paper formulates the single maximum continuous wireless charging time during the in-vivo experiment, thus improving the biological safety of PAAS during in-vivo experiments, and then prolonging the implantation time of PAAS.
[1] | JEREZ-ROIG J, SOUZA D L B, AMARAL F L J S, et al. Prevalence of fecal incontinence (FI) and associated factors in institutionalized older adults[J]. Archives of Gerontology and Geriatrics, 2015,60(3):425-430. |
[2] | MUNEER A, PEARCE I, RALPH D. Prosthetic surgery in urology[M]. Cham, Switzerland: Springer International Publishing, 2016. |
[3] | NORDENSTAM J, BOLLER A M, MELLGREN A. Sacral nerve stimulation in the treatment of bowel disorders[J]. Progress in Neurological Surgery, 2016,29:200-212. |
[4] | CHRISTIANSEN J, LORENTZEN M. Implantation of artificial sphincter for anal incontinence[J]. The Lancet, 1987,330(8553):244-245. |
[5] | JAMES M H, MCCAMMON K A. Artificial urinary sphincter for post-prostatectomy incontinence: A review[J]. International Journal of Urology, 2014,21(6):536-543. |
[6] | FATTORINI E, BRUSA T, GINGERT C, et al. Artificial muscle devices: Innovations and prospects for fecal incontinence treatment[J]. Annals of Biomedical Engineering, 2016,44(5):1355-1369. |
[7] | BHARUCHA A E, DUNIVAN G, GOODE P S, et al. Epidemiology, pathophysiology, and classification of fecal incontinence: State of the science su-mmary for the national institute of diabetes and digestive and kidney diseases (NIDDK) workshop[J]. The American Journal of Gastroenterology, 2015,110(1):127-136. |
[8] | FORTE M L, ANDRADE K E, LOWRY A C, et al. Systematic review of surgical treatments for fecal incontinence[J]. Diseases of the Colon and Rectum, 2016,59(5):443-469. |
[9] | KUMAR L, EMMANUEL A. Internal anal sphincter: Clinical perspective[J]. The surgeon: Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 2016,15(4):211-216. |
[10] | WANG X, DASILVA G, MARON D J, et al. Outcomes of reimplantation of the artificial bowel sphincter[J]. Diseases of the Colon and Rectum, 2016,59(2):122-126. |
[11] | PAKRAVAN F, HELMES C. Magnetic anal sphincter augmentation in patients with severe fecal incontinence[J]. Diseases of the Colon and Rectum, 2015,58(1):109-114. |
[12] | KE L, YAN G, YAN S, et al. Optimal design of litz wire coils with sandwich structure wirelessly powering an artificial anal sphincter system[J]. Artificial Organs, 2015,39(7):615-626. |
[13] | JIN W, YAN G, WU H, et al. Preliminary study of a novel puborectalis-like artificial anal sphincter[J]. Artificial Organs, 2017,41(9):845-851. |
[14] | ZHOU Z, YAN G, WANG Z, et al. A novel power supply system for puborectalis-like artificial anal sphincter[J]. Artificial Organs, 2019,43(6):109-123. |
[15] | RUTHMANN O, RICHTER S, SEIFERT G. The first teleautomatic low-voltage prosjournal with multiple therapeutic applications: A new version of the German artificial sphincter system[J]. Artificial Organs, 2010,34(8):635-641. |
[16] | 贾智伟, 颜国正, 石煜, 等. 基于生物安全性的无线能量传输系统接收线圈优化设计[J]. 上海交通大学学报, 2012,46(7):1127-1131. |
[16] | JIA Zhiwei, YAN Guozheng, SHI Yu, et al. Optimization design of transmitting coils in a wireless power transmission system based on the human tissue safety[J]. Journal of Shanghai Jiao Tong University, 2012,46(7):1127-1131. |
/
〈 |
|
〉 |