由太阳能热驱动的吸附式冷热联供系统可以输出温度适宜的冷风和生活用水,且无需冷水回路和冷水驱动水泵,可满足小型化应用的需求.为了探究该系统的运行性能及其影响因素,对1种由2个吸附床、1个冷凝器和1个重力热管型蒸发器组成的硅胶-水吸附式冷风机进行了实验研究,确定了机组的动态运行特性.结果表明,机组能够有效利用62~85℃范围内的太阳能热水,系统的冷量为0.95~2.76kW,制冷性能系数为0.24~0.46,综合性能系数为 1.48~2.40,机组单个循环最佳制冷时间为750s.当驱动热水、冷却水和冷风的进口平均温度分别为85.1℃、29.9℃和29.5℃时,冷风和冷却水的出口平均温度分别为22.4℃和40.1℃.实验结果为高效利用太阳能实现冷热联供提供参考依据.
The adsorption cooling and heating cogeneration system driven by solar thermal energy can produce cold air and domestic water with a suitable temperature. It does not require a cooling water circuit and a cooling water pump but can meet the needs of miniaturized applications. In order to explore the operation performance and influencing factors of the system, an experimental study was conducted on a silica gel-water adsorption air cooler with two adsorption beds, a condenser and a gravity heat pipe evaporator. The dynamic operating characteristics of the cooler were obtained. The results show that the cooler can effectively utilize the solar hot water in the range of 62℃ to 85℃; the cooling capacity ranges from 0.95kW to 2.76kW; the system refrigeration coefficient of performance ranges from 0.24 to 0.46, and comprehensive coefficient of performance ranges from 1.48 to 2.40; and the optimal cycle time for a single cycle of the cooler is 750s. When the average inlet temperatures of hot water, cooling water, and cold air are respectively 85.1℃, 29.9℃, and 29.5℃, the average outlet temperatures of cold air and cooling water are respectively 22.4℃ and 40.1℃. The experimental results provide reliable information for the efficient use of solar energy to achieve cooling and heating cogeneration.
[1]杜春旭, 侯晓煌, 苑中显, 等.新型太阳能吸附制冷系统性能实验研究[J]. 制冷, 2015, 34(3): 1-6.
DU Chunxu, HOU Xiaohuang, YUAN Zhongxian, et al. Performance experimental study of a novel solar adsorption refrigeration system[J]. Refrigeration, 2015, 34(3): 1-6.
[2]代彦军, 王如竹.太阳能制冷讲座(1)太阳能空调制冷技术[J]. 太阳能, 2010(5): 20-26.
DAI Yanjun, WANG Ruzhu. Solar refrigeration lecture (1) Solar air conditioning refrigeration technology[J]. Solar Energy, 2010(5): 20-26.
[3]ALLOUHI A, KOUSKSOU T, JAMIL A, et al. Optimal working pairs for solar adsorption cooling applications[J]. Energy, 2015, 79(1): 235-247.
[4]BALARAS C A, GROSSMAN G, HENNING H M, et al. Solar air conditioning in Europe—An overview[J]. Renewable and Sustainable Energy Reviews, 2007, 11(2): 299-314.
[5]HENNING H M. Solar assisted air conditioning of buildings—An overview[J]. Applied Thermal Enginee-ring, 2006, 27(10): 1734-1749.
[6]BALGHOUTHI M, CHAHBANI M H, GUIZANI A. Solar Powered air conditioning as a solution to reduce environmental pollution in Tunisia[J]. Desalination, 2005, 185(1): 105-110.
[7]陈恒, 李廷贤, 王丽伟, 等.太阳能吸附式空调固化复合吸附剂性能[J]. 化工学报, 2009, 60(5): 1097-1103.
CHEN Heng, LI Tingxian, WANG Liwei, et al. Sorption performance of consolidated composite sorbent used in solar-powered sorption air-conditioning system[J]. CIESC Journal, 2009, 60(5): 1097-1103.
[8]翟晓强, 王如竹, 吴静怡, 等.太阳能吸附式空调系统的运行优化及试验研究[J]. 暖通空调, 2006(7): 1-6.
ZHAI Xiaoqiang, WANG Ruzhu, WU Jingyi, et al. Operation optimization of a solar powered adsorption air conditioning system and experimental study[J]. Journal of HV & AC, 2006(7): 1-6.
[9]ZHANG G, WANG D C, ZHANG J P, et al. Simulation of operating characteristics of the silica gel-water adsorption chiller powered by solar energy[J]. Solar Energy, 2011, 85(7): 1469-1478.
[10]PAN Q W, WANG R Z, WANG L W, et al. Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers[J]. International Journal of Refrigeration, 2016, 67(1): 336-344.
[11]LU Z S, WANG R Z. Performance improvement by mass-heat recovery of an innovative adsorption air-conditioner driven by 50—80 ℃ hot water[J]. Applied Thermal Engineering, 2013, 55(1/2): 113-120.
[12]KIM D S, FERREIRA C I. Solar refrigeration options—A state-of-the-art review[J]. International Journal of Refrigeration, 2008, 31 (1): 3-15.
[13]WANG D C, WU J Y, XIA Z Z, et al. Study of a novel silica gel-water adsorption chiller. Part II. Experimental study[J]. International Journal of Refrigeration, 2005, 28(7): 1084-1091.
[14]ZHAI X Q, WANG R Z, Dai Y J, et al. Solar integrated energy system for a green building[J]. Energy and Buildings, 2007, 39(8): 985-993.
[15]SINHA S, MILANI D, LUU M T, et al. Enhancing the performance of a solar-assisted adsorption chiller using advanced composite materials[J]. Computers and Chemical Engineering, 2018, 119(2): 406-424.
[16]PAN Q W, WANG R Z. Study on operation strategy of a silica gel-water adsorption chiller in solar cooling application[J]. Solar Energy, 2018, 172(1): 24-31.
[17]JAISWAL A K, MITRA S, DUTTA P, et al. Influence of cycle time and collector area on solar driven adsorption chillers[J]. Solar Energy, 2016, 136(Sup. C): 450-459.
[18]PALOMBA V, VASTA S, FRENI A, et al. Increasing the share of renewables through adsorption solar cooling: A validated case study[J]. Renewable Energy, 2017, 110(1): 126-140.
[19]SAH R P, CHOUDHURY B, DAS R K. Study of a two-bed silica gel-water adsorption chiller: performance analysis[J]. International Journal of Sustainable Energy, 2018, 37(1): 30-46.
[20]DESHMUKH H, MAIYA M P, SRINIVASA M S. Continuous vapour adsorption cooling system with three adsorber beds[J]. Applied Thermal Enginee-ring, 2015, 82(5): 380-389.
[21]YANG G Z, XIA Z Z, WANG R Z, et al. Research on a compact adsorption room air conditioner[J]. Energy Conversion and Management, 2005, 47(15): 1267-2177.
[22]中国国家标准化管理委员会.房间空气调节器: GB/T 7725—2004[S]. 北京: 中国标准出版社, 2004.
Standardization Administration of China. Room air conditioners: GB/T 7725—2004[S]. Beijing: Standards Press of China, 2004.
[23]潘权稳. 采用模块化吸附床的硅胶-水吸附式系统制冷性能研究及优化[D]. 上海: 上海交通大学, 2015.
PAN Quanwen. Performance study and optimization of silica gel-water adsorption refrigeration system using modular adsorber[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[24]中华人民共和国国家质量监督检验检疫总局.室内空气质量: GB/T 18883—2002[S]. 北京: 中国标准出版社, 2002.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Indoor air quality standard: GB/T 18883—2002[S]. Beijing: Standards Press of China, 2002.
[25]张文杰.新型硅胶-水吸附式制冷机的实验研究[D].郑州: 郑州大学, 2008.
ZHANG Wenjie. Experiment study on a novel silica gel-water adsorption chiller[D]. Zhengzhou: Zhengzhou University, 2008.