学报(中文)

基于一种混合智能算法的有限元模型修正多解问题

展开
  • 武汉理工大学 土木工程与建筑学院, 武汉 430070
康俊涛(1978-),男,湖北省仙桃市人,教授,主要从事桥梁工程领域的教学与研究工作.

网络出版日期: 2020-07-03

基金资助

国家自然科学基金(51608408),湖北省自然科学基金(2015CFB393),中央高校基本科研业务费专项资金(2017IVB046)资助项目

A Hybrid Evolutionary Algorithm for Identifying Multiple Alternatives in Model Updating

Expand
  • School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

Online published: 2020-07-03

摘要

为了使有限元模型修正结果更加符合结构实际情况,将传统的提供单一修正结果转变为提供多个修正结果,然后由决策者根据现场情况、类似工程经验等非参数信息来决定最终采用的修正模型;并且针对这一问题,将优化速度快的稳态遗传算法和优化精度高的梯度下降算法相结合,提出了一种混合智能算法.最后分别采用数值算例和ASCE-Benchmark模型修正过程验证了所提算法的寻找多解能力和优化精度.结果表明,本文所提算法可以寻找到定义域内的全部极值,且相比于稳态遗传算法具有更高的精度,ASCE-Benchmark算例中,两个修正后的有限元模型与实测结果之间的频率误差均有明显下降.

本文引用格式

康俊涛, 张亚州, 秦世强 . 基于一种混合智能算法的有限元模型修正多解问题[J]. 上海交通大学学报, 2020 , 54(6) : 652 -660 . DOI: 10.16183/j.cnki.jsjtu.2018.270

Abstract

To make the result of finite element model updating more accord with the real structure, this paper converts to provide multiple alternatives, instead of offering just a single result. With those options, the policy makers can apply their working experience and consider field condition, which leads to more suitable decision. This paper proposes a hyper algorithm which combines the steady-state genetic algorithm and the gradient descent algorithm. A numerical simulation and an ASCE-Benchmark problem are employed to verify the ability to find multiple alternatives and optimization accuracy of the proposed method. The results show that the algorithm can optimize all the minimums and show a better accuracy compared to the steady-state genetic algorithm. After updating the frequency, error between the finite element model and real structure is significantly reduced.

参考文献

[1]李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8): 1-7. LI Hui, BAO Yuequan, LI Shunlong, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8): 1-7. [2]方志, 张国刚, 唐盛华, 等. 混凝土斜拉桥动力有限元建模与模型修正[J]. 中国公路学报, 2013, 26(3): 77-85. FANG Zhi, ZHANG Guogang, TANG Shenghua, et al. Finite element modeling and updating of concrete cable-stayed bridge[J]. China Journal of Highway and Transport, 2013, 26(3): 77-85. [3]PETERSEN  W, ISETH O. Sensitivity-based finite element model updating of a pontoon bridge[J]. Engineering Structures, 2017, 150: 573-584. [4]林谢星, 吕中荣. 基于混合灵敏度矩阵的轴向功能梯度梁的损伤识别[J]. 中山大学学报(自然科学版), 2017, 56(1): 41-45. LIN Xiexing, L Zhongrong. Hybrid sensitivity matrix for damage identification in axially functionally graded beams[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56(1): 41-45. [5]陈炉云, 杨念. 基于多层次权重系数的结构动力学模型修正[J]. 上海交通大学学报, 2017, 51(12): 1415-1421. CHEN Luyun, YANG Nian. Model updating analysis of structural dynamic problem based on multi-level weight coefficients[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12): 1415-1421. [6]CAICEDO J M, YUN G. A novel evolutionary algorithm for identifying multiple alternative solutions in model updating[J]. Structural Health Monitoring—An International Journal, 2011, 10(5): 491-501. [7]ZARATE B A, CAICEDO J M. Finite element model updating: Multiple alternatives[J]. Engineering Structures, 2008, 30(12): 3724-3730. [8]陈学前, 沈展鹏, 刘信恩. 考虑模型偏差的结构动力学模型修正[J]. 振动测试与诊断, 2018, 38(2): 273-277. CHEN Xueqian, SHEN Zhanpeng, LIU Xinen. Updating of structural dynamics model with model bias[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(2): 273-277. [9]ZAKIAN P, KHAJI N, KAVEH A. Graph theoretical methods for efficient stochastic finite element analysis of structures[J]. Computers & Structures, 2017, 178: 29-46. [10]张春丽, 吕中荣. 考虑温度影响的桥梁结构损伤识别[J]. 中山大学学报(自然科学版), 2016, 55(3): 102-105. ZHANG Chunli, L Zhongrong. Structural damage identification including the temperature difference based on response sensitivity analysis[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(3): 102-105. [11]SHABBIR F, OMENZETTER P. Model updating using genetic algorithms with sequential niche technique[J]. Engineering Structures, 2016, 120: 166-182. [12]ASTROZA R, NGUYEN L T, NESTOROVI T. Finite element model updating using simulated annealing hybridized with unscented Kalman filter[J]. Computers & Structures, 2016, 177: 176-191. [13]SUN H, BETTI R. A Hybrid optimization algorithm with Bayesian inference for probabilistic model updating[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(8): 602-619. [14]SYSWERDA G. A study of reproduction in generational and steady state genetic algorithms[J]. Foundations of Genetic Algorithms, 1991, 1: 94-101. [15]JOHNSON E, LAM H F, KATAFYGIOTIS L S, et al. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J]. Journal of Engineering Mechanics, 2004, 130(1): 3-15. [16]REYNDERS E, ROECK G D. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 617-637. [17]秦世强. 桥梁健康监测与工作模态分析的理论和应用及系统实现[D]. 成都: 西南交通大学, 2013. QIN Shiqiang. Bridge health monitoring and operational modal analysis: Theory, application and implementation[D]. Chengdu: Southwest Jiaotong University, 2013.
文章导航

/