学报(中文)

无线携能通信中基于时间反演的能量效率优化

展开
  • 重庆邮电大学 重庆移动通信工程研究中心, 重庆 400065

网络出版日期: 2020-07-03

基金资助

国家自然科学基金(61771084),重庆市科委自然科学基金(cstc2015jcyjA40050)资助项目

Energy Efficiency Optimization Based on Time Reversal in SWIPT

Expand
  • Chongqing Mobile Communication Resarch Center, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Online published: 2020-07-03

摘要

针对无线携能通信(SWIPT)中的能量效率(EE)优化问题,考虑在满足一定通信服务质量和收集能量的条件下,通过一种基于时间反演(TR)的优化算法最大化系统的EE.首先,将TR引入SWIPT中构建新型的传输方案,并分析EE的闭合表达式.其次,对问题进行规划和分析,发现该优化问题是一个二元分式非凸规划问题,需要进行数学变换将其转化为凸优化问题.最后,通过Dinkelbach算法和CVX得到问题的解.仿真结果表明:解码噪声功率、最大发射功率及信噪比增大时,优化后的EE也会增大,且在满足约束条件时,基于TR的优化算法能够明显增大EE,提升系统性能.

本文引用格式

陈善学, 刘祚粮, 李方伟 . 无线携能通信中基于时间反演的能量效率优化[J]. 上海交通大学学报, 2020 , 54(6) : 592 -598 . DOI: 10.16183/j.cnki.jsjtu.2018.080

Abstract

Targeted at the problem of energy efficiency (EE) optimization in simultaneous wireless information and power transfer (SWIPT), this paper considers using an optimization algorithm based on time reversal (TR) to maximize the energy efficiency of the system under the condition of satisfying certain communication service quality and collecting energy. First, the time reversal is introduced into simultaneous wireless information and power transfer to construct a new transmission scheme, and the closed expression of energy efficiency is analyzed. Next, through analyzing and planning the problem, it is found that the optimization problem is a two-element fractional non-convex programming problem which needs to be transformed into a convex optimization problem by mathematical transformation. Finally, the solution of the problem is obtained by using the Dinkelbach algorithm and CVX. The simulation results show that the optimized energy efficiency will increase when the decoding noise power, the maximum transmission power, and the signal-to-noise ratio increase. The optimization algorithm based on time reversal can significantly increase the energy efficiency when the constraints are satisfied.

参考文献

[1]ZHOU X, ZHANG R, HO C K. Wireless information and power transfer: Architecture design and rate-energy tradeoff[J]. IEEE Transactions on Communications, 2013, 61(11): 4754-4767. [2]KHANDAKER M R A, WONG K K. SWIPT in MISO multicasting systems[J]. IEEE Wireless Communications Letters, 2014, 3(3): 277-280. [3]ARSHNEY L R. Transporting information and energy simultaneously[C]∥IEEE International Sympo-sium on Information Theory. Toronto, ON, Canada: IEEE, 2008: 1612-1616. [4]CLAESSENS S, RAJABI M, PAN N, et al. Mea-surement-based analysis of the throughput-power level trade-off with modulated multisine signals in a SWIPT system[C]∥89th ARFTG Microwave Mea-surement Conference. Honololu, HI, USA: IEEE, 2017: 1-4. [5]MA L, WANG Y, XU Y. Sum rate optimization for SWIPT system based on zero-forcing beamforming and time switching[C]∥13th International Wireless Communications and Mobile Computing Conference. Valencia, Spain: IEEE, 2017: 351-356. [6]SUN J, ZHANG W, SUN J, et al. Energy-spectral efficiency in simultaneous wireless information and power transfer[C]∥IEEE/CIC International Conference on Communications. Chengdu, China: IEEE, 2016: 1-6. [7]SUN Q, LI L, MAO J. Simultaneous information and power transfer scheme for energy efficient MIMO systems[J]. IEEE Communications Letters, 2014, 18(4): 600-603. [8]ZHANG C, ZHAO H, LI W, et al. Energy efficiency optimization of simultaneous wireless information and power transfer system with power splitting receiver[C]∥25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC). Washington DC: IEEE, 2014: 2135-2139. [9]TANG J, SO D K C, ZHAO N, et al. Energy efficiency optimization with SWIPT in MIMO broadcast channels for internet of things[J]. IEEE Internet of Things Journal, 2018, 1(99): 1. [10]ZEWDE T A, GURSOY M C. Energy-efficient resource allocation for SWIPT in multiple access channels[C]∥Annual Conference on Information Science and Systems. Princeton, NJ, USA: IEEE, 2016: 246-251. [11]ZHOU X, LI Q. Energy efficiency optimisation for SWIPT AF two-way relay networks[J]. Electronics Letters, 2017, 53(6): 436-438. [12]GUO S, SHI Y, YANG Y, et al. Energy efficiency maximization in mobile wireless energy harvesting sensor networks[J]. IEEE Transactions on Mobile Computing, 2017, 17(7): 1524-1537. [13]WANG B, WU Y, HAN F, et al. Green wireless communications: A time-reversal paradigm[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1698-1710. [14]BOUZIGUES M A, SIAUD I, HELARD M. Turn back the clock: Time reversal for green radio communications[J]. IEEE Vehicular Technology Magazine, 2013, 8(1): 49-56. [15]CHEN Y, HAN F, YANG Y H, et al. Time-reversal wireless paradigm for green internet of things: An overview[J]. IEEE Internet of Things Journal, 2014, 1(1): 81-98. [16]TRAN H V, KADDOUM G, TRAN H, et al. Time reversal SWIPT networks with an active eavesdropper: SER-energy region analysis[C]∥IEEE 84th Vehicular Technology Conference. Montreal, QC, Canada: IEEE, 2016: 1-5. [17]HAN F, YANG Y H, WANG B, et al. Time-reversal division multiple access in multi-path channels[C]∥Global Tele communications Conference. Kathmandu, Nepal: IEEE, 2011: 1-5. [18]DINKELBACH W. On nonlinear fractional progra-mming[J]. Management Science, 1967, 13(7): 492-498. [19]ZHANG C, ZHAO H, LI W, et al. Energy efficiency optimization of simultaneous wireless information and power transfer system with power splitting receiver[C]∥Personal, Indoor, and Mobile Radio Co-mmunication. Washington D.C., USA: IEEE, 2014: 2135-2139.
文章导航

/