学报(中文)

基于浮动平台的机器人恒力控制研磨方法

展开
  • 华南理工大学 机械与汽车工程学院, 广州 510641

网络出版日期: 2020-06-02

基金资助

国家科技重大专项(2015ZX04005006),广东省科技重大专项(2014B090921004,2014B090920002),中山市科技重大专项(2016F2FC0006)

Constant Force Control Method for Robotic Disk Grinding Based on Floating Platform

Expand
  • School of Mechanical and Automotive Engineering,South China University of Technology, Guangzhou 510641, China

Online published: 2020-06-02

摘要

为了保证机器人研磨的控制精度,提高研磨工件的加工质量,研制了一种基于浮动平台的机器人研磨系统,提出线性自抗扰控制的恒力研磨策略.所研制的机器人浮动平台研磨系统主要包含机器人、力反馈传感器、研磨系统、浮动平台机构,以研磨系统为研究对象,建立机器人末端工件与磨盘接触的磨削力模型.基于此非线性机器人磨削模型设计扩张状态观测器,分析线性自抗扰控制算法的闭环稳定性,提出线性自抗扰恒力研磨控制律,并为验证所提出的方法进行了实验分析.研究结果表明:线性自抗扰控制研磨算法能实现有效的恒力研磨控制;与比例积分微分(PID)控制相比,线性自抗扰控制能显著地减少机器人稳定磨削过程中的力波动,大大降低了研磨工件的表面粗糙度.

本文引用格式

张铁,吴圣和,蔡超 . 基于浮动平台的机器人恒力控制研磨方法[J]. 上海交通大学学报, 2020 , 54(5) : 515 -523 . DOI: 10.16183/j.cnki.jsjtu.2020.05.009

Abstract

In order to keep the control accuracy of robotic grinding and improve quality of grinding workpiece, a robotic grinding system based on the floating platform is developed and a constant force grinding strategy of linear active disturbance rejection control (LADRC) is proposed.The robotic floating grinding system mainly includes robots, force feedback sensors, grinding system and floating platform mechanism.Taking the robotic grinding system as the research object, grinding contacting force model between the workpiece at the end of the robot and the grinding disc is established.According to the nonlinear robot grinding model, the extended state observer is designed. The closed-loop stability of LADRC is analyzed, and the corresponding grinding experiments are designed to verify the feasibility of LADRC algorithm. Finally experiments and analyses show that LADRC can realize an effective robotic constant force control for disk grinding.Comparing with proportion integration differentiation (PID) control, LADRC can significantly reduce the force fluctuation during the grinding process and greatly decrease the surface roughness of abrasive workpiece.

参考文献

[1]XU X H, ZHU D H, ZHANG H Y, et al. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2368-2382. [2]SUN Y, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1): 204-210. [3]MARQUEZ J J, PEREZ J M, RIOS J, et al. Process modeling for robotic polishing[J]. Journal of Materials Processing Technology, 2005, 159(1): 69-82. [4]TIAN F J, LI Z G, LV C, et al. Polishing pressure investigations of robot automatic polishing on curved surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1/2/3/4): 639-646. [5]NORBERTO PIRES J, RAMMING J, RAUCH S, et al. Force/torque sensing applied to industrial robotic deburring[J]. Sensor Review, 2002, 22(3): 232-241. [6]SONG Y X, LIANG W, YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing, 2012, 23(5): 1903-1913. [7]HUANG H, GONG Z M, CHEN X Q, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Technology, 2002, 127(2): 140-145. [8]JUNG S, HSIA T C, BONITZ R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 474-483. [9]ZHANG Q W, HAN L L, XU F, et al. Research on velocity servo-based hybrid position/force control scheme for a grinding robot[J]. Advanced Materials Research, 2012, 490/491/492/493/494/495: 589-593. [10]MARCHAL P C, SORNMO O, OLOFSSON B, et al. Iterative learning control for machining with industrial robots[J]. IFAC Proceedings Volumes, 2014, 47(3): 9327-9333. [11]TAO Y, ZHENG J, LIN Y, et al. Fuzzy PID control method of deburring industrial robots[J]. Journal of Intelligent & Fuzzy Systems, 2015, 29(6): 2447-2455. [12]ZHANG S, LEI M, DONG Y, et al. Adaptive neural network control of coordinated robotic manipulators with output constraint[J]. IET Control Theory & Applications, 2016, 10(17): 2271-2278. [13]ELBESTAWI M A, YUEN K M, SRIVASTAVA A K, et al. Adaptive force control for robotic disk grinding[J]. CIRP Annals, 1991, 40(1): 391-394. [14]SRNMO O, OLOFSSON B, ROBERTSSON A, et al. Increasing time-efficiency and accuracy of robotic machining processes using model-based adaptive force control[J]. IFAC Proceedings Volumes, 2012, 45(22): 543-548. [15]SONG Y X, YANG H J, HONGBO L. Intelligent control for a robot belt grinding system[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 716-724. [16]韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M].北京: 国防工业出版社, 2008: 243-280. HAN Jingqing. Active disturbance rejection control technique-the technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008: 243-280. [17]万磊, 张英浩, 孙玉山, 等. 欠驱动智能水下机器人的自抗扰路径跟踪控制[J]. 上海交通大学学报, 2014, 48(12): 1727-1731. WAN Lei, ZHANG Yinghao, SUN Yushan, et al. ADRC path-following control of underactuated AUVs[J]. Journal of Shanghai Jiao Tong University, 2014, 48(12): 1727-1731. [18]ZHU D H, XU X H, YANG Z Y, et al. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments[J]. Tribology International, 2018, 120: 93-98. [19]MENDES N, NETO P. Indirect adaptive fuzzy control for industrial robots: A solution for contact applications[J]. Expert Systems with Applications, 2015, 42(22): 8929-8935. [20]PATNAIK DURGUMAHANTI U S, SINGH V, VENKATESWARA RAO P. A new model for grinding force prediction and analysis[J]. International Journal of Machine Tools and Manufacture, 2010, 50(3): 231-240. [21]WERNER G. Influence of work material on grinding forces[J]. Annals of the CIRP, 1978, 27(1): 243-248. [22]GAO Z. Active disturbance rejection control: A paradigm shift in feedback control system design[C]//2006 American Control Conference. Minneapolis, MN, USA: IEEE, 2006: 9047186. [23]ZHENG Q, GAO L Q, GAO Z Q. On stability ana-lysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//2007 46th IEEE Conference on Decision and Control. New Orleans, LA, USA: IEEE, 2008: 9885774.
文章导航

/