学报(中文)

基于目标参数最优的磁耦合谐振式无线能量传输系统频率特性分析及仿真验证

展开
  • 1. 桂林电子科技大学 机电工程学院, 广西 桂林 541004; 2. 广州金升阳科技有限公司, 广州 510700

网络出版日期: 2020-04-30

基金资助

国家自然科学基金(61741126),广西制造系统与先进制造技术重点实验室主任课题(16-380-12-006Z),广西研究生教育创新计划项目(YCBZ2019050),桂林电子科技大学研究生优秀论文培育项目(16YJPYSS02)

Analysis and Simulation of Frequency Characteristic Based on Optimal Objective Parameter in Magnetically-Coupled Resonant Wireless Power Transfer System

Expand
  • 1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China; 2. MORNSUN Guangzhou Science and Technology Co., Ltd., Guangzhou 510700, China

Online published: 2020-04-30

摘要

磁耦合谐振式无线能量传输技术能实现中等距离的高效能量输出,表现出极大的应用潜力.在该技术中,频率的变化会对系统传输性能产生重要的影响.因此频率特性分析对提高系统性能具有重要的意义.在考虑线圈内阻的条件下,利用阻抗反射理论分析了4种拓扑结构下距离和负载的变化对系统发射端谐振补偿策略的影响,发现串串型拓扑结构的频率稳定性最好.基于互感理论分析了在理想和非理想状态下距离和负载的变化对系统最佳工作频率的影响.在MATLAB环境下建模分析验证了上述理论的正确性.利用插值法和多项式拟合对理想状态下传输效率的最佳工作频率进行仿真分析.结果表明,样条插值和8次多项式拟合效果最好,可为后期提高频率控制的精确性提供一定的参考.

本文引用格式

范兴明,贾二炬,高琳琳,张伟杰,焦自权,张鑫 . 基于目标参数最优的磁耦合谐振式无线能量传输系统频率特性分析及仿真验证[J]. 上海交通大学学报, 2020 , 54(4) : 430 -440 . DOI: 10.16183/j.cnki.jsjtu.2020.04.012

Abstract

Magnetically coupled resonant wireless power transfer (MCR-WPT) has the advantages such as mid-range and high efficiency and shows great application potential. In this technology, the change of frequency has an important impact on the transmission performance of the system. Therefore, the analysis of frequency characteristics is of great significance to improve the performance of the system. The increase of resonant topological strategy is sending terminal, resulting from the variation of loads and transmission distance, is analyzed theoretically through the reflect impedance theory taking coil resistance into account in four topological structures. It is found that series-series topological structure has the most stable frequency property. Besides, this paper researches the relationship between optimal operating frequency and variations of loads, transmission distance in the desiable and undesiable cases by means of multual inductance theory. Modeling and analysis in MATLAB environment verify the correctness of the above theory. The interpolation method and the polynomial fitting are used to simulate and analyze the optimal operating frequency of transmission efficiency under ideal state. The results show that spline interpolation and 8th order polynomial fitting are the best, which can provide some references for improving the accuracy of frequency control in the later period.

参考文献

[1]赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 1-13. ZHAO Zhengming, ZHANG Yiming, CHEN Kai-nan. New progress of magnetically-coupled resonant wireless power transfer technology[J]. Proceedings of the CSEE, 2013, 33(3): 1-13. [2]张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式传能系统的频率分裂特性研究[J]. 中国电机工程学报, 2012, 32(9): 167-173. ZHANG Xian, YANG Qingxin, CHEN Haiyan, et al. Research on characteristics of frequency splitting in electromagnetic coupling resonant power trans-mission systems[J]. Proceedings of the CSEE, 2012, 32(9): 167-173. [3]范兴明, 莫小勇, 张鑫. 磁耦合谐振无线电能传输的研究现状及应用[J]. 电工技术学报, 2013, 28(12): 75-82. FAN Xingming, MO Xiaoyong, ZHANG Xin. Research status and application of wireless power transfer via coupled magnetic resonances[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 75-82. [4]WATERS B H, SAMPLE A P, BONDE P, et al. Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system[J]. Proceedings of the IEEE, 2012, 100(1): 138-149. [5]KIM S, HO J S, CHEN L Y, et al. Wireless power transfer to a cardiac implant[J]. Applied Physics Letters, 2012, 101(7): 073701. [6]张剑韬, 朱春波, 陈清泉. 应用于无尾家电的非接触式无线能量传输技术[J]. 电工技术学报, 2014, 29(9): 33-37. ZHANG Jiantao, ZHU Chunbo, CHEN Qingquan. Contactless wireless energy transfer technology applied to tail-free household appliances[J]. Tran-sactions of China Electrotechnical Society, 2014, 29(9): 33-37. [7]IMURA T, UCHIDA T, HORI Y. Flexibility of contactless power transfer using magnetic resonance coupling to air gap and misalignment for EV[J]. World Electric Vehicle Journal, 2009, 3(2): 332-341. [8]黄学良, 曹伟杰, 周亚龙, 等. 磁耦合谐振系统中的两种模型对比探究[J]. 电工技术学报, 2013, 28(Sup.2): 13-17. HUANG Xueliang, CAO Weijie, ZHOU Yalong, et al. Comparative study on the two kinds of models in the technology of magnetic coupling resonance system[J]. Transactions of China Electrotechnical Society, 2013, 28(Sup.2): 13-17. [9]杜秀, 王健强, 程鹏天. 磁耦合无线能量传输中耦合模理论和电路理论的对比分析[J]. 电工技术学报, 2013, 28(Sup.2): 7-12. DU Xiu, WANG Jianqiang, CHENG Pengtian. Comparison and analysis results of two kinds of mo-deling for magnetically coupled wireless power transfer[J]. Transactions of China Electrotechnical Society, 2013, 28(Sup.2): 7-12. [10]傅文珍, 张波, 丘东元, 等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报, 2009, 29(18): 21-26. FU Wenzhen, ZHANG Bo, QIU Dongyuan, et al. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system[J]. Proceedings of the CSEE, 2009, 29(18): 21-26. [11]谭林林, 黄学良, 赵俊锋, 等. 一种无线电能传输系统的盘式谐振器优化设计[J]. 电工技术学报, 2013, 28(8): 1-6. TAN Linlin, HUANG Xueliang, ZHAO Junfeng, et al. Optimization design for disc resonators of a wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 1-6. [12]薛明, 杨庆新, 李阳, 等. 磁耦合谐振式无线电能传输系统负载特性研究[J]. 电工技术学报, 2013, 28(Sup.2): 28-34. XUE Ming, YANG Qingxin, LI Yang, et al. The study of load characteristic in wireless energy transfer system based on EM coupling resonance[J]. Transactions of China Electrotechnical Society, 2013, 28(Sup.2): 28-34. [13]罗斌, 生茂棠, 吴仕闯, 等. 磁谐振耦合式单中继线圈无线功率接力传输系统的建模与分析[J]. 中国电机工程学报, 2013, 33(21): 170-177. LUO Bin, SHENG Maotang, WU Shichuang, et al. Modeling and analysis of magnetic resonance coupling wireless relay power transfer system with single intermediate coil resonator[J]. Proceedings of the CSEE, 2013, 33(21): 170-177. [14]董纪清, 杨上苹, 黄天祥, 等. 用于磁耦合谐振式无线电能传输系统的新型恒流补偿网络[J]. 中国电机工程学报, 2015, 35(17): 4468-4476. DONG Jiqing, YANG Shangping, HUANG Tian-xiang, et al. A novel constant current compensation network for magnetically-coupled resonant wireless power transfer system[J]. Proceedings of the CSEE, 2015, 35(17): 4468-4476. [15]HUANG R H, ZHANG B, QIU D Y, et al. Frequency splitting phenomena of magnetic resonant coupling wireless power transfer[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [16]李阳, 杨庆新, 闫卓, 等. 磁耦合谐振式无线电能传输系统的频率特性[J]. 电机与控制学报, 2012, 16(7): 7-11. LI Yang, YANG Qingxin, YAN Zhuo, et al. Cha-racteristic of frequency in wireless power transfer system via magnetic resonance coupling[J]. Electric Machines and Control, 2012, 16(7): 7-11. [17]FU W Z, ZHANG B, QIU D Y. Study on frequency-tracking wireless power transfer system by resonant coupling[C]//2009 IEEE 6th International Power Electronics and Motion Control Conference. New York: IEEE, 2009: 2658-2663. [18]SI P, HU A P, MALPAS S, et al. A frequency control method for regulating wireless power to implan-table devices[J]. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2(1): 22-29. [19]KIM N Y, KIM K Y, KIM C W. Automated frequency tracking system for efficient mid-range magnetic resonance wireless power transfer[J]. Microwave and Optical Technology Letters, 2012, 54(6): 1423-1426. [20]BEH T C, KATO M, IMURA T, et al. Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3689-3698. [21]孙跃, 夏晨阳, 戴欣, 等. 感应耦合电能传输系统互感耦合参数的分析与优化[J]. 中国电机工程学报, 2010, 30(33): 44-50. SUN Yue, XIA Chenyang, DAI Xin, et al. Analysis and optimization of mutual inductance for inductively coupled power transfer system[J]. Proceedings of the CSEE, 2010, 30(33): 44-50. [22]武瑛, 严陆光, 徐善纲. 新型无接触电能传输系统的稳定性分析[J]. 中国电机工程学报, 2004, 24(5): 63-66. WU Ying, YAN Luguang, XU Shangang. Stability analysis of the new contactless power delivery system[J]. Proceedings of the CSEE, 2004, 24(5): 63-66. [23]KURS A, KARALIS A, MOFFATT R, et al. Wireless power transfer via strongly coupled magnetic re-sonances[J]. Science, 2007, 317(5834): 83-86. [24]唐治德, 徐阳阳, 赵茂, 等. 耦合谐振式无线电能传输的传输效率最佳频率[J]. 电机与控制学报, 2015, 19(3): 8-13. TANG Zhide, XU Yangyang, ZHAO Mao, et al. Transfer efficiency maximum frequency of wireless power transfer via magnetic resonance coupling[J]. Electric Machines and Control, 2015, 19(3): 8-13. [25]ZHANG Y M, LU T, ZHAO Z M, et al. Selective wireless power transfer to multiple loads using recei-vers of different resonant frequencies[J]. IEEE Tran-sactions on Power Electronics, 2015, 30(11): 6001-6005.
文章导航

/