学报(中文)

液罐车精确动力学建模及其侧倾稳定性

展开
  • 吉林大学 交通学院, 长春 130022
任园园(1982-),女,吉林省长春市人,副教授,研究方向为驾驶人行为及智能驾驶.

网络出版日期: 2020-04-09

基金资助

国家自然科学基金(51705188)资助项目

Accurate Dynamics Modeling and Roll Stability of Tank Vehicle

Expand
  • School of Transportation, Jilin University, Changchun 130022, China

Online published: 2020-04-09

摘要

建立了常见罐体内液体侧向晃动的等效椭圆规钟摆模型,推导了罐体非惯性参照系下的钟摆动力学方程,并通过整车受力分析构建了液罐车精确动力学模型.基于此,在TruckSim中搭建了液罐车模型,研究其动力学响应特性.研究发现:与普通载货汽车相比,液罐车在侧向稳定性上有轻微的过多转向特性,其转弯半径下降约3%~7%;在侧倾稳定性上,罐车横向载荷转移率显著提高,充液比小于0.7时其临界稳定车速下降30%以上.参与冲击的液体质量占整车总质量的比值是影响罐车侧倾稳定性的关键因素,该值主要由充液比和罐体形状决定.罐车应尽量避免充液比0.4~0.7的情况,此时车辆的侧倾稳定性最差;当绝大多数情况下货物充液比不低于0.8时,车辆应装配长短轴之比较大的椭圆柱罐体,其他情况下应装配圆柱罐体.液体黏度主要对车辆的瞬态响应产生影响.液体黏度的提高能显著降低车辆稳态响应时间和超调量,且罐体长短轴之比越大,效果越显著.

本文引用格式

任园园,李显生,郑雪莲,王杰 . 液罐车精确动力学建模及其侧倾稳定性[J]. 上海交通大学学报, 2020 , 54(3) : 312 -321 . DOI: 10.16183/j.cnki.jsjtu.2020.03.011

Abstract

Equivalent trammel pendulum model is established to describe lateral liquid sloshing in common tanks, and its dynamical equation under non-inertial coordinate system is then derived. The accurate dynamic model of tank vehicle is established on the basis of vehicle force analysis. Thereafter, the model of tanker vehicle is established in TruckSim, and its dynamic response is analyzed. The results show that compared to normal trucks, tankers have slight understeer characteristics, and their turning radius decreases about 3%-7%. At the same time, tankers have much greater lateral load transfer, and their critical speed decreases more than 30% when liquid fill level is lower than 0.7. The ratio of pendulum mass to tanker mass is the main factor that alleviates vehicle roll stability, and it is determined mainly by liquid fill percentage and tank shape. Tank vehicle has quite bad stability when liquid fill percentage is 0.4-0.7, which should be avoided as much as possible. When liquid fill level is not lower than 0.8 most of the time, tankers with elliptical cross section are recommended, otherwise cylinder tank is a better choice. Liquid viscous has a great influence on vehicle transient dynamics. With its increase, vehicle steady time and its overshoot is greatly alleviated, and the function would be more obvious when tank vehicle is flatter.

参考文献

[1]KOLAEI A, RAKHEJA S, RICHARD M. Effects of tank cross-section on dynamic fluid slosh loads and roll stability of a partly-filled tank truck[J]. Euro-pean Journal of Mechanics-B/Fluids, 2014, 46: 46-58. [2]NICOLSEN B, WANG L, SHABANA A. Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios[J]. Journal of Sound and Vibration, 2017, 405: 208-233. [3]RANGANATHAN R. Rollover threshold of partially filled tank vehicles with arbitrary tank geometry[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1993, 207(3): 241-244. [4]RANGANATHAN R, YING Y, MILES J. Analysis of fluid slosh in partially filled tanks and to their impact on the directional response of vehicles[J]. SAE Technical Papers, 1993: 932942. [5]SOUTHCOMBE E, RUHL R, KUZNETSOV E. Fluid load analysis within the static roll model[J]. SAE Technical Papers, 2000: 2000-01-3476. [6]YAN G, SIDDIQUI K, RAKHEJA S. Transient fluid slosh and its effect on the rollover-threshold analysis of partially filled conical and circular tank trucks [J]. International Journal of Heavy Vehicle Systems, 2005, 12(4): 323-343. [7]郑雪莲, 李显生, 任园园, 等. 瞬时液体冲击对汽车罐车侧倾稳定性的影响[J]. 吉林大学学报(工学版), 2014, 44(3): 625-630. ZHENG Xuelian, LI Xiansheng, REN Yuanyuan, et al. Rollover stability analysis of tank vehicle impacted by transient liquid sloshing[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(3): 625-630. [8]万滢, 赵伟强, 封冉, 等. 车-液耦合动力学建模及液体响应成分对操纵性的影响[J].吉林大学学报(工学版), 2017, 47(2): 353-364. WAN Ying, ZHAO Weiqiang, FENG Ran, et al. Dynamic modeling and vehicle-liquid coupling characteristic analysis for tank trucks[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 353-364. [9]李显生, 于迪, 张景海. 基于遗传算法的液罐车侧倾稳定性模型[J]. 中国公路学报, 2015, 28(7): 115-120. LI Xiansheng, YU Di, ZHANG Jinghai. Roll stabi-lity model of tank trucks based on genetic algorithm [J]. China Journal of Highway and Transport, 2015, 28(7): 115-120. [10]陈益苞, RAKHEJA Subhash, 上官文斌. 罐体横截面形状对液罐车侧倾稳定性影响分析[J]. 振动与冲击, 2016, 35(6): 146-151. CHEN Yibao, RAKHEJA Subhash, SHANGGUAN Wenbin. Modified design and safety analysis of tank cross section based on roll stability[J]. Journal of Vibration and Shock, 2016, 35(6): 146-151. [11]DAI L, XU L, SETIAWAN B. A new non-linear approach to analysing the dynamic behaviour of tank vehicles subjected to liquid sloshing[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2005, 219(1): 75-86. [12]赵伟强, 封冉, 宗长富. 基于等效晃动模型的液罐车防侧翻控制策略[J]. 吉林大学学报(工学版), 2018, 48(1): 30-35. ZHAO Weiqiang, FENG Ran, ZONG Changfu. Anti-rollover control strategy of tank trucks based on equivalent sloshing model[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 30-35. [13]SALEM M. Rollover stability of partially filled heavy-duty elliptical tankers using trammel pendulums to simulate fluid sloshing[D]. Morgantown: West Virginia University, 2000. [14]SALEM M, MUCINO H, SAUNDERS E. Lateral sloshing in partially filled elliptical tanker trucks using a trammel pendulum[J]. International Journal of Heavy Vehicle Systems, 2009, 16(1): 207-224. [15]CASASANTA J. Rollover stability analysis of commercial semi-tanker trucks utilizing a trammel pendulum model to simulate fluid sloshing[D]. New York: Binghamton University, 2010. [16]郑雪莲, 李显生, 任园园, 等. 非满载罐体液体冲击等效机械模型参数确定[J]. 湖南大学学报(自然科学版), 2013, 40(6): 53-58. ZHENG Xuelian, LI Xiansheng, REN Yuanyuan, et al. Parameter values of equivalent mechanical model for liquid sloshing in partially-filled tanks[J]. Journal of Hunan University (Natural Sciences), 2013, 40(6): 53-58. [17]ZHENG X, LI X, REN Y. Equivalent mechanical model for lateral liquid sloshing in partially filled tank vehicles [J]. Mathematical Problems in Engineering, 2012, 2012: 162825. [18]LI X, ZHENG X, REN Y, et al. Study on driving stability of tank trucks based on equivalent trammel pendulum for liquid sloshing [J]. Discrete Dynamics in Nature and Society, 2013, 2013: 659873. [19]于迪, 李显生, 刘宏飞, 等. 非满载液罐车侧倾稳定性模型研究[J]. 湖南大学学报(自然科学版), 2016, 43(8): 40-44. YU Di, LI Xiansheng, LIU Hongfei, et al. Research on roll stability model of partially-filled tankers[J]. Journal of Hunan University (Natural Sciences), 2016, 43(8): 40-44. [20]YU D, LI X, LIU H, et al. Research on liquid sloshing model of partially-filled tank by nonlinear external excitation[J]. Journal of Vibroengineering, 2015, 17(6): 3224-3236. [21]YANG X, GAO J. Compactly modelling and analysing the roll dynamics of a partly filled tank truck[J]. International Journal of Heavy Vehicle Systems, 2016, 23 (1): 81-105. [22]吴相稷, 杨秀建, 宋均涛. 液罐车液体侧向晃动模型研究[J]. 农业装备与车辆工程, 2018, 56 (2): 7-11. WU Xiangji, YANG Xiujian, SONG Juntao. Study on liquid lateral sloshing model of tank vehicle [J]. Agricultural Equipment and Vehicle Engineering, 2018, 56 (2): 7-11.
文章导航

/