学报(中文)

基于零空间行为法的自主水下机器人避障策略

展开
  • 上海交通大学 海洋智能装备与系统教育部重点实验室; 海洋工程国家重点实验室, 上海 200240
庞师坤(1987-),男,安徽省宿州市人,博士生,主要从事水下机器人控制研究.

网络出版日期: 2020-04-09

Collision Avoidance Strategy for Autonomous Underwater Vehicle Based on Null-Space-Based Behavioral Approach

Expand
  • Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education; State Key Laboratory of Ocean Engineering, Shanghai 200240, China

Online published: 2020-04-09

摘要

针对自主水下机器人(AUV)在复杂海底环境驶向目标点的过程中可能遇到动静态障碍物的问题,设计了基于零空间行为(NSB)法的避障策略.首先将AUV驶向目标点的整体任务分解成不同的子任务,并把避障子任务设为最高优先级任务;对于多任务控制目标,将由低优先级任务向量向高优先级任务向量的零空间进行投影得到的综合任务向量作为最终输出函数;在完成高优先级任务的同时,部分或全部完成低优先级任务,以避免各任务目标的相互冲突.随后根据不同子任务的优先级设计相应的任务函数,研究了针对静态和动态障碍物的避障策略;推导并建立了AUV运动的综合输出函数,以确保其在驶向目标点的过程中对不同类型障碍物进行有效规避.模拟计算结果证明该方法是有效的和可行的,在复杂障碍物环境中能够达到预期的避障效果.

本文引用格式

庞师坤,梁晓锋,李英辉,易宏 . 基于零空间行为法的自主水下机器人避障策略[J]. 上海交通大学学报, 2020 , 54(3) : 295 -304 . DOI: 10.16183/j.cnki.jsjtu.2020.03.009

Abstract

An autonomous underwater vehicle (AUV) obstacle avoidance strategy based on null-space-based behavioral (NSB) approach is designed, aiming at solving dynamic or static obstacle avoidance problem the AUV will encounter while moving to the target in complex underwater environment. Firstly, the AUV overall task moving to the target is decomposed into different subtasks, and the obstacle avoidance subtask is set as the highest priority. As for multi-task control targets, the low-level task vector is projected to the null space of the higher task vector, and the integrated task output is used as the final output function. The low-level task is partially or completely completed while completing the higher task, thereby the mutual conflict between different level targets can be avoided in this way. In order to study the obstacle avoidance strategy for static and dynamic obstacles, the corresponding task functions are designed in accordance with different subtask priorities. The comprehensive output function of AUV motion is deduced and established to ensure that it can avoid different types of obstacles effectively in the process of heading to the target point. The simulation results demonstrate the effectiveness and the feasibility of the proposed method, which could achieve an expected obstacle avoidance effect in complex underwater obstacle environments.

参考文献

[1]潘无为, 姜大鹏, 庞永杰, 等. 人工势场和虚拟结构相结合的多水下机器人编队控制[J]. 兵工学报, 2017, 38(2): 326-334. PAN Wuwei, JIANG Dapeng, PANG Yongjie, et al. A multi-AUV formation algorithm combining artificial potential field and virtual structure[J]. Acta Armamentarii, 2017, 38(2): 326-334. [2]丁家如, 杜昌平, 赵耀, 等. 基于改进人工势场法的无人机路径规划算法[J]. 计算机应用, 2016, 36(1): 287-290. DING Jiaru, DU Changping, ZHAO Yao, et al. Path planning algorithm for unmanned aerial vehicles based on improved artificial potential field[J]. Journal of Computer Applications, 2016, 36(1): 287-290. [3]张殿富, 刘福. 基于人工势场法的路径规划方法研究及展望[J]. 计算机工程与科学, 2013, 35(6): 88-95. ZHANG Dianfu, LIU Fu. Research and development trend of path planning based on artificial potential field method[J]. Computer Engineering and Science, 2013, 35(6): 88-95. [4]叶彬强, 王一. 基于人工势场法的机器人避障算法[J]. 重庆理工大学学报(自然科学), 2012, 26(9): 82-85. YE Binqiang, WANG Yi. Research of obstacle avoidance algorithm for robot based on artificial potential field[J]. Journal of Chongqing University of Technology (Natural Science), 2012, 26(9): 82-85. [5]张洋洋, 瞿栋, 柯俊, 等. 基于速度障碍法和动态窗口法的无人水面艇动态避障[J]. 上海大学学报(自然科学版), 2017, 23(1): 1-16. ZHANG Yangyang, QU Dong, KE Jun, et al. Dynamic obstacle avoidance for USV based on velocity obstacle and dynamic window method[J]. Journal of Shanghai University (Natural Sciences Edition), 2017, 23(1): 1-16. [6]徐保来, 管贻生, 苏泽荣, 等. 改进动态窗口法的阿克曼移动机器人局部路径规划器[J]. 机电工程技术, 2016, 45(9): 21-26. XU Baolai, GUAN Yisheng, SU Zerong, et al. A modified dynamic window approach to local path planning for the Ackermann mobile robot[J]. Mechanical & Electrical Engineering Technology, 2016, 45(9): 21-26. [7]ERIKSEN B O H, BREIVIK M, PETTERSEN K Y, et al. A modified dynamic window algorithm for horizontal collision avoidance for AUVs[C]//IEEE Conference on Control Applications. Buenos Aires, Argentina: IEEE, 2016: 499-506. [8]程传奇, 郝向阳, 李建胜, 等. 融合改进A*算法和动态窗口法的全局动态路径规划[J]. 西安交通大学学报, 2017, 51(11): 137-143. CHENG Chuanqi, HAO Xiangyang, LI Jiansheng, et al. Global dynamic path planning based on fusion of improved A* algorithm and dynamic window approach[J]. Journal of Xi’an Jiaotong University, 2017, 51(11): 137-143. [9]KIM H, KIM D, SHIN J U, et al. Angular rate-constrained path planning algorithm for unmanned surface vehicles[J]. Ocean Engineering, 2014, 84: 37-44. [10]LIKHACHEY M, KOENIG S. A generalized framework for lifelong planning A* search[C]//15th International Conference on Automated Planning and Scheduling. Monterey, CA, USA: AAAI, 2008: 99-108. [11]张贺, 胡越黎, 王权, 等. 基于改进D*算法的移动机器人路径规划[J]. 工业控制计算机, 2016, 29(11): 73-74. ZHANG He, HU Yueli, WANG Quan, et al. Path planning of mobile robot based on improved D* algorithm[J]. Industrial Control Computer, 2016, 29(11): 73-74. [12]WANG Z, XIANG X B. Improved Astar algorithm for path planning of marine robot[C]//37th Chinese Control Conference. Wuhan: IEEE, 2018: 5410-5414. [13]WANG Z, XIANG X B, YANG J, et al. Composite Astar and B-spline algorithm for path planning of autonomous underwater vehicle[C]//7th International Conference on Underwater System Technology: Theory and Applications. Kuala Lumpur, Malaysia: IEEE, 2017. [14]徐澎. 基于行为的多AUV队形控制技术研究[D]. 上海: 上海交通大学, 2013. XU Peng. Behavior-based formation control of multi-AUV[D]. Shanghai: Shanghai Jiao Tong University, 2013. [15]甘文洋, 朱大奇. 基于行为策略的AUV全覆盖信度函数路径规划算法[J]. 系统仿真学报, 2018, 30(5): 1857-1868. GAN Wenyang, ZHU Daqi. Complete coverage belief function path planning algorithm of autonomous underwater vehicle based on behavior strategy[J]. Journal of System Simulation, 2018, 30(5): 1857-1868. [16]魏立新, 吴绍坤, 孙浩, 等. 基于多行为的移动机器人路径规划[J]. 控制与决策, 2018, 34(12): 2721-2726. WEI Lixin, WU Shaokun, SUN Hao, et al. Mobile robot path planning based on multi-behaviors[J]. Control and Decision, 2018, 34(12): 2721-2726. [17]高剑, 李勇强, 徐德民, 等. 基于行为的自主水下航行器无碰路径跟踪控制[J]. 大连海事大学学报, 2012, 38(4): 30-34. GAO Jian, LI Yongqiang, XU Demin, et al. Behavior-based collision free path following control of an autonomous underwater vehicle[J]. Journal of Dalian Maritime University, 2012, 38(4): 30-34. [18]ROSALES C, LEICA P, SARCINELLI-FILHO M, et al. 3D formation control of autonomous vehicles based on null-space[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1/2/3/4): 453-467. [19]程玉虎, 易建强, 赵冬斌. 机器人行为协调机制研究进展[J]. 机器人, 2004, 26(2): 187-192. CHENG Yuhu, YI Jianqiang, ZHAO Dongbin. The progress of the behavior coordination mechanism for robots[J]. Robot, 2004, 26(2): 187-192. [20]邬林波. 基于NSB方法的多机器人编队控制[D]. 长沙: 国防科学技术大学, 2010. WU Linbo. Multi-robots formation control based on null-space-based method[D]. Changsha: National University of Defense Technology, 2010. [21]ANTONELLI G, ARRICHIELLO F, CHIAVERINI S. The null-space-based behavioral control for autonomous robotic systems[J]. Intelligent Service Robotics, 2008, 1(1): 27-39. [22]DO K D, PAN J. Control of ships and underwater vehicles: Design for underactuated and nonlinear marine systems[M]. UK: Springer Science & Business Media, 2009.
文章导航

/