学报(中文)

电子机柜瞬时冲击的动力学行为

展开
  • 中国核动力研究设计院 核反应堆系统设计技术重点实验室, 成都 610213

网络出版日期: 2020-04-08

Transient Impact Dynamics of Electronic Cabinet

Expand
  • Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China

Online published: 2020-04-08

摘要

建立某舰载机柜的有限元模型,采用瞬时动态分析法对机柜在冲击状态下的振动行为进行模拟计算,并分析了机箱托架厚度和立柱厚度等对冲击响应的影响.结果表明:机柜的立柱、机箱、托架以及盖板属于机柜敏感区域,容易产生高幅振动;机柜底板不同区域对冲击力的响应不同,因此传递到机柜不同部位的振动信号有所不同;随着高度增加,机箱法向位移和振动强度总体呈降低趋势;机柜系统的前后不对称性是导致机柜顶盖不同区域和前后立柱振动强度有所不同的主要原因.此外,参数化研究结果表明托架厚度和立柱厚度对机柜冲击响应也有重要影响.研究结果可为机柜结构抗冲击的合理设计提供理论依据.

本文引用格式

王东伟,刘明星,吴霄,杨睿,代俊安 . 电子机柜瞬时冲击的动力学行为[J]. 上海交通大学学报, 2019 , 53(Sup.1) : 109 -117 . DOI: 10.16183/j.cnki.jsjtu.2019.S1.020

Abstract

A finite element model of a shipboard electric cabinet was established, and the vibration signals in different areas under the impact state were simulated by using the transient dynamic analysis method in Abaqus. The effect of the thickness of box bracket and stand columns on the impact response of cabinet was analyzed as well. The results show that the column, box, bracket and cover of the cabinet are sensitive areas of cabinet, and tend to generate high amplitude vibration. Since different areas of cabinet floor exhibit different responses to impact behavior, the vibration signals transmit to different parts of cabinet are different. As the height increases, the normal displacement and vibration intensity of box decrease gradually. The asymmetry of front and rear of cabinet system is the main reason for difference of vibration intensity between the different areas of cabinet top and front and rear columns. In addition, the thicknesses of bracket and column also have strong influence on the impact response of cabinet. The results can provide the theoretical basis for the reasonable design of impact resistance of cabinet structure.

参考文献

[1]汪玉, 华宏星.舰船现代冲击理论及应用[M].北京: 科学出版社, 2005. WANG Yu, HUA Hongxing. Theory and application of modern ship impact[M]. Beijing: Science Press, 2005. [2]GUO Jun, HUANG Shizhang, KANG Youwei, et al. Experimental research on the impact environment of multiplate cabinet[J]. Shock and Vibration, 2019(15): 1-11. [3]程林风, 王敏毅, 黄朝学. 基于ANSYS的舰载电子机柜振动可靠性研究[J]. 四川兵工学报, 2014, 35(1): 115-118. CHENG Linfeng, WANG Minyi, HUANG Chao-xue. Electronic ship-based cabinets reliability under vibration based on ANSYS[J]. Journal of Sichuan Ordnance, 2014, 35(1): 115-118. [4]李亚璘, 欧阳光耀. 分配电箱冲击试验与数值仿真[J]. 中国舰船研究, 2011, 6(4): 34-36. LI Yalin, OUYANG Guangyao. Shock test and si-mulation of distribution box[J]. Chinese Journal of Ship Research, 2011, 6(4): 34-36. [5]吴桐, 冯麟涵.冲击下舰载机柜内部冲击环境分析[J]. 兵器装备工程学报, 2018, 39(10): 58-62. WU Tong, FENG Linhan. Analysis of shock environment in shipboard aircraft cabinet under shock[J]. Journal of Ordnance Equipment Engineering, 2018, 39(10): 58-62. [6]匡锐, 周海涛, 王迪, 等. 基于瞬态动力学仿真分析的某舰载发控仪机柜抗冲击设计研究[J]. 舰船电子工程, 2019, 39(8): 194-198. KUANG Rui, ZHOU Haitao, WANG Di, et al. Study of a ship borne console cabinet impact resistance design based on transient dynamics simulation analysis[J]. Ship Electronic Engineering, 2019, 39(8): 194-198. [7]谢坤. 某型舰载电子设备冲击响应分析研究[D].武汉: 华中科技大学, 2009. XIE Kun. Analysis of impact response of an electro-nic equipment on ship[D]. Wuhan: Huazhong University of Science and Technology, 2009. [8]刘兆峰, 陈卫, 姜智锐, 等.核电数字化仪控系统机柜抗冲击分析技术[J]. 上海交通大学学报, 2018, 52(1): 5-9. LIU Zhaofeng, CHEN Wei, JIANG Zhirui, et al. Anti-shock analysis technology for nuclear power DCS cabinet[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 5-9. [9]孟庆鹏, 庄文许, 顾郑强. 某舰载雷达发射机机柜抗冲击仿真分析[J]. 雷达与对抗, 2014, 34(3): 39-42. MENG Qingpeng, ZHUANG Wenxu, GU Zhengqiang. Research on anti-shock simulation of transmitter cabinet of a ship borne radar[J]. Radar & ECM, 2014, 34(3): 39-42. [10]何佳磊, 周川, 周宁波, 等. 基于动态设计分析方法的舰载鱼雷发射装置抗冲击特性研究[J]. 鱼雷技术, 2015, 23(2): 139-144. HE Jialei, ZHOU Chuan, ZHOU Ningbo, et al. Research on anti-shock capability of ship borne torpedo launcher based on dynamic design analysis method[J]. Torpedo Technology, 2015, 23(2): 139-144. [11]WANG D W, MO J L, OUYANG H, et al. Improving dynamic and tribological behaviours by means of a Mn-Cu damping alloy with grooved surface features[J]. Tribology Letters, 2018, 66(2): 1-16. [12]QIAN W J, CHEN G X, OUYANG H, et al. A transient dynamic study of the self-excited vibration of a railway wheel set-track system induced by saturated creep forces[J]. Vehicle System Dynamics, 2014, 52(9): 1115-1138.
文章导航

/