为分析水下双阵列拖曳系统在阵列缆(拖缆)破断时及破断后的运动响应,展开数学建模与数值模拟计算,探讨其在破断情况下的运动及动力响应特性.给出了系统的动力学数学模型、数值求解方案以及缆破断处理方法,其中拖缆采用集中质量法进行建模,而水下拖体因其为关键部件而采用6自由度方程进行描述,通过建立耦合边界条件形成整个系统的运动控制方程组,采用4阶龙格库塔方法进行积分求解.最后展开数值模拟计算,详细分析了系统在不同情况下破断的运动响应特性,包括破断时的瞬态响应和破断的后期响应,给出了一些有意义的结论.结果显示,高速时阵列缆大长度破断后系统可能会跳出水面,回转时破断可能会发生阵列缆碰撞缠绕现象.
This paper plans to research the dynamics of a dual array towed system at and after breaking sonar array conditions, and a mathematical model and the numerical solving method are developed, which are used to intensively analyze the system’s dynamic and kinematic responses at different conditions. In this paper, the cable is modeled by the lumped mass method, and the underwater towed body, as an essential part, is described by the 6-degree-of-freedom maneuverability equation of submarines, while coupling conditions between them are given to form the whole system’s governing equations set, which is solved by 4th order Runge-Kutta method in time domain. The numerical implement of breaking array is also given. Some numerical simulations are carried out to analyze the system’s responses at different maneuvering conditions, which include instantaneous response and after response of breaking array, some meaningful conclusions are drawn. The numerical result shows that the system may move above the water surface at high speed with long array breaking, and impact and entanglement may occur when a array breaks during loop maneuvers.
[1]董波, 张郑海. 美国潜艇拖曳阵声呐技术特点及发展趋势[J]. 舰船科学技术, 2016, 38(9): 150-153.
DONG Bo, ZHANG Zhenghai. Current status and development trend of submarine towed linear array sonar of US navy[J]. Ship Science and Technology, 2016, 38(9): 150-153.
[2]Research Introduction of Lab.. TowSimuX—Dyna-mics and numerical simulation of underwater towed systems-Hengex@gmail.com[EB/OL]. (2018-01-30) [2018-10-10]. http://202.120.42.116: 6320/DT88888.
[3]WANG F, HUANG G L, DENG D H. Steady-state analysis of towed marine cables[J]. Journal of Shanghai Jiao Tong University, 2008, 13(2): 239-244.
[4]GOMES S C P, ZANELA E B, PEREIRA A E L. Automatic generation of dynamic models of cables [J]. Ocean Engineering, 2016, 121(15): 559-571.
[5]ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10(6): 443-457.
[6]HUANG S. Dynamic analysis of three-dimensional marine cables[J]. Ocean Engineering, 1994, 21 (6): 587-605.
[7]王飞. 各向异性弯矩扭矩作用下的导流缆运动建模与仿真研究[J]. 哈尔滨工程大学学报, 2013, 34(5): 549-554.
WANG Fei. Modeling and simulation of faired cable with anisotropic bending moment and torque[J]. Journal of Harbin Engineering University, 2013, 34(5): 549-554.
[8]王飞, 黄国樑. 导流缆拖曳系统准动态运动建模及仿真研究[J]. 上海交通大学学报, 2012, 46(10): 1658-1664.
WANG Fei, HUANG Guoliang. Semi-dynamic modeling and simulation study of underwater faired system[J]. Journal of Shanghai Jiao Tong University, 2012, 46(10): 1658-1664.
[9]FRANCISCO G, AMELIA DLP, ALBERTO L, et al. Real-time simulation of cable pay-out and reel-in with towed fishing gears[J]. Ocean Engineering, 2017, 131(1): 295-307.
[10]YANG N, JENG D S, ZHOU X L. Tension analysis of submarine cables during laying operations[J]. The Open Civil Engineering Journal, 2013, 7: 282-291.
[11]苑志江, 金良安, 迟卫, 等. 海洋拖曳系统的船/缆/体耦合模型研究[J].船舶力学, 2016, 20(10): 1252-1261.
YUAN Zhijiang, JIN Liangan, CHI Wei, et al. Research on the coupling model of underwater towed system[J]. Journal of Ship Mechanics, 2016, 20(10): 1252-1261.
[12]郑智林, 苑志江, 金良安, 等. 舰船机动中拖曳系统建模与定深控制研究[J]. 兵器装备工程学报, 2016, 37(4): 106-110.
ZHENG Zhilin, YUAN Zhijiang, JIN Liangan, et al. Mathematic model and depth control of special underwater towed system during warship maneuvers[J]. Journal of Ordnance Equipment Engineering, 2016, 37(4): 106-110.
[13]庞师坤, 刘旌扬, 王健, 等. 二级深拖系统的回转运动特性[J]. 船舶工程, 2017, 39(9): 71-77.
PANG Shikun, LIU Jingyang, WANG Jian, et al. Motion characteristics of two-part towed system during towing ship turning maneuvers[J]. Ship Engineering, 2017, 39(9): 71-77.
[14]PARK J, KIM N. Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(2): 409-425.