学报(中文)

基于本征正交分解和动态模态分解的尾涡激振现象瞬态过程的模态分析

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
谢海润(1989-),男,河南省南阳市人,博士生,主要从事风扇叶片气动弹性特性研究.

网络出版日期: 2020-03-06

基金资助

上海市自然科学基金(18ZR1418600),2011航空发动机协同中心资助项目

Modal Analysis of Wake Induced Vibration Transient Process Based on POD and DMD

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-03-06

摘要

尾涡激振是气动弹性领域的一种常见现象,在上游尾迹的气动激励下会导致流场中结构的强迫振动,该现象会危及被激励结构的完整性和疲劳寿命.本文使用圆柱/叶片的近似模型研究尾涡激振问题.该模型中的圆柱位于上游均匀来流,能够产生特定频率的卡门涡街;叶片位于流场下游,受到圆柱尾迹所施加的持续脉动激励,产生强迫振动.针对尾涡激励的近似模型,通过基于Fluent的二维数值计算,模拟了上游圆柱的脱落涡以及叶片从固定到以本身自然频率振动的瞬态过程,从而提供了流场变化过程的详细信息.基于非定常瞬态结果,采用本征正交分解(POD)和动态模态分解(DMD)分析方法,通过分解与重构叶片附近流场的压力场,提取模态频率及其变化过程,得到了尾涡激振现象的主要流动特征.通过对比两种模态分析结果发现,POD重构在残差处理方面有较大的优势,而DMD在单一频率模态的提取以及变化情况的分析方面更有优势.

本文引用格式

谢海润,吴亚东,欧阳华,王安正 . 基于本征正交分解和动态模态分解的尾涡激振现象瞬态过程的模态分析[J]. 上海交通大学学报, 2020 , 54(2) : 176 -185 . DOI: 10.16183/j.cnki.jsjtu.2020.02.009

Abstract

Wake induced vibration is a common phenomenon in the field of aeroelasticity which can cause forced vibrations of the structure. This phenomenon can endanger the integrity and the fatigue life of the excited structure. In this paper, wake induced vibration is studied by an approximate model with upstream cylinder and downstream blade. The cylinder in freestream produces Karman vortex street with a specific frequency. When the cylinder wake encounters the downstream blade, continuous pulse excitation is applied to the blade. Two-dimension numerical simulation based on Fluent illustrates the shedding vortex and transient process of blade from static to vibration at its natural frequency, and the detail information of transient flow field is obtained. Based on the unsteady transient results, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are applied for the decomposition and the reconstruction of the pressure field near the vibrating blade. The modal frequency and the evolution process are extracted to capture the main flow structure of wake induced vibration. The comparison of two modal analysis methods shows that POD reconstruction has a smaller maximum residual than DMD, and DMD has more advantages in single frequency mode extraction and corresponding evolution analysis.

参考文献

[1]BRIKA D, LANEVILLE A. The flow interaction between a stationary cylinder and a downstream flexible cylinder[J]. Journal of Fluids and Structures, 1999, 13(5): 579-606. [2]ASSI G R S. Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom[J]. Journal of Fluids and Structures. 2014, 50: 340-357. [3]刘丹青. 振荡流中串列双圆柱涡激振动数值模拟[D]. 天津: 天津大学, 2016. LIU Danqing. Numerical investigation of vortex-induced vibration of two circular cylinders in tandem arrangements in oscillatory flow[D]. Tianjin: Tianjin University, 2016. [4]LUMLEY J. The structure of inhomogeneous turbulence[C]//Atmospheric Turbulence & Wave Propagation. Moscow: Nauka, 1967: 166-178. [5]MUNDAY P M, TAIRA K. Separation control on NACA 0012 airfoil using momentum and wall-normal vorticity injection[C]//32nd AIAA Applied Aerodynamics Conference. Atlanta: AIAA, 2014-2685. [6]MURRAY N, SLLSTRM E, UKEILEY L. Properties of subsonic open cavity flow fields[J]. Physics of Fluids, 2009, 21(9): 178-479. [7]FENG L H, WANG J J, PAN C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control[J]. Physics of Fluids, 2011, 23(1): 014106. [8]SHI L L, LIU Y Z, WAN J J. Influence of wall proximity on characteristics of wake behind a square cylinder: PIV measurements and POD analysis[J]. Experimental Thermal and Fluid Science, 2010, 34(1): 28-36. [9]ROWLEY C W. Model reduction for fluids, using balanced proper orthogonal decomposition[J]. International Journal of Bifurcation and Chaos, 2005, 15(3): 997-1013. [10]SIEBER M, PASCHEREIT C O, OBERLEITHNER K. Spectral proper orthogonal decomposition[J]. Journal of Fluid Mechanics, 2016, 792(7): 798-828. [11]SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656(10): 5-28. [12]ROWLEY C W, MEZI I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. [13]丁杰, 胡晨星, 刘鹏寅, 等.无叶扩压器中非定常流动的DMD模态分析[J].动力工程学报, 2017, 37(6): 447-453. DING Jie, HU Chenxing, LIU Pengyin, et al. Dynamic mode decomposition of the unsteady flow in a vaneless diffuser[J]. Journal of Chinese Society of Power Engineering, 2017, 37(6): 447-453. [14]PAN C, XUE D, WANG J. On the accuracy of dynamic mode decomposition in estimating instability of wave packet[J]. Experiments in Fluids, 2015, 56(8): 1-15. [15]NOACK B R, STANKIEWICZ W, MORZYSKI M, et al. Recursive dynamic mode decomposition of transient and post-transient wake flows[J]. Journal of Fluid Mechanics, 2016, 809: 843-872. [16]寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9): 2679-2689. KOU Jiaqing, ZHANG Weiwei, GAO Chuanqiang. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679-2689. [17]陈静涛. 圆柱绕流的二维数值模拟和尾迹分析[J]. 计算机辅助工程, 2013, 22(6): 1-6. CHEN Jingtao. 2D numerical simulation and wake analysis on flow around circular cylinder[J]. Compu-ter Aided Engineering, 2013, 22(6): 1-6. [18]TU J H, ROWLEY C W, LUCHTENBURG D M, et al. On dynamic mode decomposition: Theory and applications[J]. Journal of Computational Dynamics, 2014, 1(2): 391-421. [19]詹昊, 李万平, 方秦汉, 等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报, 2008, 30(12): 129-132. ZHAN Hao, LI Wanping, FANG Qinhan, et al. Numerical simulation of the flow around a circular cylinder at varies Reynolds number[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129-132.
文章导航

/