针对疲劳寿命预测中传统疲劳累积损伤准则(即Miner准则)存在误差较大的问题,为了提高固体充填液压支架疲劳寿命的预测精度和保证服役过程的安全可靠性,利用灰色系统模型GM(1,1)对传统Miner准则加以改进.以ZZC8800/20/38型六柱支撑式固体充填液压支架的底座为研究对象,基于ANSYS对危险工况下底座应力进行分析,同时结合疲劳试验对底座进行寿命预测.结果表明:相比传统Miner准则,改进Miner准则的预测精度提高了4032%,为固体充填液压支架疲劳寿命预测提供了一种有效的方法,对其安全服役具有一定的参考意义.
Aiming at the problem that the error existing in traditional fatigue cumulative damage criterion (Miner criterion) for fatigue life prediction is quite larger, in order to improve the prediction precision of fatigue life for solid-filling hydraulic support and to ensure a safe and reliable service process, a grey system model GM (1,1) is used to improve the traditional Miner criterion. Taking ZZC8800/20/38 six-column supporting solid-filling hydraulic support foundation as the object of study, the stress analysis of the base under dangerous conditions was carried out through ANSYS, and the fatigue life prediction of the foundation was carried out with the fatigue test. The results show that compared with the traditional Miner criterion, the prediction precision of the improved Miner criterion increases by 4032%, which provides an effective method for the fatigue life prediction of the solid-filling hydraulic support, and has a certain reference significance for its security service.
[1]王邦祥, 陆金桂, 王京涛, 等. 神经网络近似模型在液压支架顶梁轻量化设计中的应用[J]. 轻工学报, 2018, 33(2): 87-94.
WANG Bangxiang, LU Jingui, WANG Jingtao, et al. Application of neural network approximate model in lightweight design of hydraulic support top beam[J]. Journal of Light Industry, 2018, 33(2): 87-94.
[2]NIU Y Q, LI M Z, DING F, et al. Visual design and computational analysis of the hydraulic support based on MATLAB[J]. Applied Mechanics and Materials, 2014, 470: 357-361.
[3]CHENG J Y, ZHANG Y D, CHENG L, et al. Study of loading and running characteristic of hydraulic support in underhand mining face[J]. Archives of Mining Sciences, 2017, 62(1): 215-224.
[4]ZHAO X H, LI F Y, LIU Y, et al. Fatigue behavior of a box-type welded structure of hydraulic support used in coal mine[J]. Materials, 2015, 8(10): 6609-6622.
[5]MI C J, GU Z Q, YANG Q Q, et al. Frame fatigue life assessment of a mining dump truck based on finite element method and multibody dynamic analysis[J]. Engineering Failure Analysis, 2012, 23: 18-26.
[6]边莉, 车向前, 张少卿. 基于改进交叉熵算法多目标不等间距阵列综合[J]. 上海交通大学学报, 2014, 48(3): 372-376.
BIAN Li, CHE Xiangqian, ZHANG Shaoqing. Multi-objective unequally-spaced array synthesis based on modified cross entropy algorithm[J]. Journal of Shanghai Jiao Tong University, 2014, 48(3): 372-376.
[7]ZHANG Q, ZHANG J X, TAI Y, et al. Horizontal roof gap of backfill hydraulic support[J]. Journal of Central South University, 2015, 22(9): 3544-3555.
[8]SU G X, CAO L M, GUO Z, et al. Design of automatic pressure increasing device of hydraulic support[J]. Journal of Residuals Science & Technology, 2016, 13(6): 137.
[9]肖新平, 王欢欢. GM(1, 1, α)模型背景值的变化对相对误差的影响[J]. 系统工程理论与实践, 2014, 34(2): 408-415.
XIAO Xinping, WANG Huanhuan. Change of GM(1, 1, α) model background value on the influences of relative error[J]. Systems Engineering—Theory & Practice, 2014, 34(2): 408-415.
[10]XIE N M. Explanations about grey information and framework of grey system modeling[J]. Grey Systems: Theory and Application, 2017, 7(2): 179-193.
[11]李国永, 谷正气, 张沙, 等. 基于不等间距灰色模型的疲劳寿命预测方法[J]. 中国机械工程, 2015, 26(24): 3267-3274.
LI Guoyong, GU Zhengqi, ZHANG Sha, et al. Fatigue life prediction method based on non-equidistant grey model[J]. China Mechanical Engineering, 2015, 26(24): 3267-3274.
[12]ZHANG Q, ZHANG J X, QI W Y, et al. Structure optimal design research on backfill hydraulic support[J]. Journal of Central South University, 2017, 24(7): 1637-1646.