学报(中文)

基于超宽带技术的强制戒毒人员实时定位系统

展开
  • 上海交通大学 电子信息与电气工程学院, 上海 200240
孙铭阳(1994-),男,山东省潍坊市人,硕士生,研究方向为智能医疗与物联网.

网络出版日期: 2020-01-16

基金资助

国家自然科学基金(61673271,81601631)资助项目

High Accuracy Ultra Wideband Real Time Location System for Drug Rehabilitation Center

Expand
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-01-16

摘要

在戒毒所智能化管理的驱动下,基于超宽带技术,设计了一种应用于戒毒所的高精度测距定位系统,改进了原有紫蜂(ZigBee)和无线局域网(Wi-Fi)方法检测精度低的问题.分析测距的误差来源,做出相应的优化校正,并提出一种延迟参数的校准方法,进一步提升测距的精度和稳定性.该系统具有测距与定位两种功能,测距功能可以设置地理围栏以限制人员活动区域,定位功能可以实时监测人员位置.实验研究表明:修正后系统测距精度达到7cm,测距更新频率达到10Hz,定位精度提高至20cm,定位频率达到5Hz以上,可以更好地满足戒毒所定位系统的实时性和精确性的要求.

本文引用格式

孙铭阳,颜国正,刘大生,王志武,韩玎,赵凯,杨雷 . 基于超宽带技术的强制戒毒人员实时定位系统[J]. 上海交通大学学报, 2020 , 54(1) : 76 -84 . DOI: 10.16183/j.cnki.jsjtu.2020.01.010

Abstract

To satisfy the needs of intelligent supervision in drug rehabilitation center, a novel high-accuracy real-time location system based on ultra wideband (UWB) technology is proposed. Compared to ZigBee and Wi-Fi location systems, the UWB location system well improves the detection accuracy. The error sources of UWB system are analyzed and the delay parameter is corrected with a newly proposed parameter. The ranging function of system is used as geo-fencing, limiting the activity area of patients. The locating function of the system can calculate the position of patients and paint their positions on the screen simultaneously. Experiments indicate that the ranging error is lower than 7cm, the refresh rate is larger than 10Hz, the locating error is lower than 20cm, and the refresh rate is larger than 5Hz. The whole system has a good accuracy and real-time capability.

参考文献

[1]肖杨, 顾红, 丁芳, 等. 动机-技能-脱敏-心理能量模式对戒毒人员慢性渴求和抑郁的干预效果[J].中国药物依赖性杂志, 2012, 21(3): 211-215. XIAO Yang, GU Hong, DING Fang et al. Effects of motivation-skills-desensitization-mental energy model on drug addicts’ chronic craving and depression[J]. Chinese Journal of Drug Dependence, 2012, 21(3): 211-215. [2]SOH P J, VANDENBOSCH G A E, MERCURI M, et al. Wearable wireless health monitoring [J]. IEEE Microwave Magazine, 2015, 16(4): 55-70. [3]胡小海, 王志武, 颜国正. 一种基于ZigBee无线网络的多参数医疗监护节点的设计[J]. 北京生物医学工程, 2015, 34(1): 64-69. HU Xiaohai, WANG Zhiwu, YAN Guozheng. Design of monitoring system with multi-parameter measurement based on ZigBee network.[J]. Beijing Biomedical Engineering, 2015, 34(1): 64-69. [4]LIN Z H, YE F, QIN W H, et al. A low-power, wireless, real-time, wearable healthcare system[C]//2016 IEEE MTT-S International Wireless Symposium (IWS). Shanghai, China: 2016: 1-4. [5]席瑞, 李玉军, 侯孟书. 室内定位方法综述[J]. 计算机科学, 2016, 43(4): 1-6. XI Rui, LI Yujun, HOU Mengshu. Survey on indoor localization[J]. Computer Science, 2016, 43(4): 1-6. [6]WANT R, HOPPER A, FALCAO V, et al. The active badge location system [J]. ACM Transactions on Information Systems, 1992, 10(1): 91-102. [7]LIONEL M N, LIU Y, LAU Y C, et al. LANDMARK: Indoor location sensing using active RFID [J]. Wireless Networks, 2004, 10(6): 701-710. [8]王益健. 蓝牙室内定位关键技术的研究与实现[D].南京: 东南大学, 2015. WANG Yijian. Research and implementation on key technologies of bluetooth indoor positioning[D]. Nanjing: Southeast University, 2015. [9]卢燕, 栗勇军. 基于低功耗蓝牙的室内定位技术研究[J] .测控技术, 2018, 37(4): 55-57. LU Yan, LI Yongjun. Research on indoor positioning technology based on bluetooth low energy [J]. Measurement & Control Technology, 2018, 37(4): 55-57. [10]SUINING H, CHAN S H G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons[J]. IEEE Communications Surveys and Tutorials, 2016, 18(1): 466-490. [11]CHEN Q, LIU H, YU M, et al. RSSI Ranging Model and 3D Indoor Positioning with ZigBee network[C]//2012 IEEE/ION Position, Location and Navigation Symposium. Myrtle Beach, SC, USA: IEEE, 2012: 1233-1239. [12]侯启真, 史秉鑫, 刘衍帆.基于RSSI的ZigBee定位技术研究[J].计算机应用与软件, 2016, 33(4): 134-137. HOU Qizhen, SHI Bingxin, LIU Yanfan. On RSSI-based ZigBee localisation technomogy[J]. Computer Applications and Software, 2016, 33(4): 134-137. [13]MCCRADY D D, DOYLE L, FORSTROM H, et al. Mobile ranging using low-accuracy clocks [J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(6): 951-957. [14]GUNTHER A, HOENE C. Measuring round trip times to determine the distance between WLAN nodes[C]//Networking 2005: Networking Technologies, Services and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems. Waterloo, Canada: 2005: 768-779. [15]IEEE. IEEE standard for local and metropolitan area networks-Part 15.4: Low-rate wireless personal area networks (LR-WPANs)[R/OL]. (2011-09-05)[2018-05-15]. https://standards.ieee.org/standard/802_15_4-2011.html. [16]SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J].Nature, 2016, 529(7587): 484-489. [17]KULMER J, HINTEREGGER S, GROSSWINDHAGER B. Using DecaWave UWB transcei-vers for high-accuracy multipath-assisted indoor positioning[C]//2017 IEEE International Conference on Communications Workshops. Paris, France: IEEE, 2017: 1239-1245. [18]李浩博, 王坚, 王川阳. 超宽带室内动态定位精度影响探究[J]. 导航定位学报, 2018, 6(1): 45-48. LI Haobo, WANG Jian, WANG Chuanyang. Discussion on affection factors of UWB indoor kinematic positioning[J]. Journal of Navigation and Positioning, 2018, 6(1): 45-48. [19]刘颖, 王树勋, 宋春莆. 移动终端定位算法及误差分析[J].系统工程与电子技术, 2001, 23(7): 98-102. LIU Ying, WANG Shuxun, SONG Chunpu. Location algorithm and error analysis about mobile terminal[J]. Systems Engineering and Electronics, 2001, 23(7): 98-102. [20]PRIYANTHA N B, CHAKRABORTY A, BALAKRISHNAN H. The cricket location-support system[C]//Proceedings of the 6th Annual International Conference on Mobile Computing and Networking. Boston, MA, USA: ACM, 2000: 32-43.
文章导航

/