传统的质量源造波方法在强非线性波浪模拟过程中精度不高,不同波况造波源区初始设置较为复杂, 针对这些问题本文提出了改进方法.考虑质量源区双向质量输出(横向和垂向),改进质量源源强函数并进行理论推导;基于OpenFOAM开源程序开展网格和时间步长收敛性验证;讨论在不同相对水深以及不同非线性强度条件下,二阶Stokes波幅值和相位与文献中传统方法模拟结果的相对误差,并对孤立波的传播过程进行模拟分析.数值模拟结果表明,改进方法不仅能提高效率,而且能提高质量源造波在较强非线性范围的模拟精度,尤其在非线性强度参数为0.2时,波幅及相位误差相对于传统方法分别降低21.7%和46.5%.
In the traditional mass source wave method, the accuracy is not high in the process of strong non-linear wave simulation, and the original setting of wave source area is complicated in different wave conditions. An improved method is proposed in this paper. Bidirectional quality outputs of the source area (lateral and vertical) are considered simultaneously, and the source function is improved and performed by theoretical derivation. The convergences of mesh and time step are verified based on the OpenFOAM program. The relative errors of second-order Stokes wave in amplitude and phase, comparing with traditional results, are discussed under different relative depths and different nonlinearity conditions. Then, a further simulation of the solitary waves propagation is performed. The numerical results show that the improved method can not only increase the efficiency but also improve the simulation accuracy of the mass source method in the high nonlinear range, especially when the nonlinearity parameter is 0.2, the amplitude error and the phase error are reduced by 21.7% and 46.5% respectively, compared to traditional ones.
[1]刘霞, 谭国焕, 王大国. 基于边界造波法的二阶Stokes波的数值生成[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(1): 107-111.
LIU Xia, TAN Guohuan, WANG Daguo. Numerical simulation of second-order Stokes based on wave-generation method of defining inlet boundary conditions[J]. Journal of Liaoning Technical University (Natural Science Edition), 2010, 29(1): 107-111.
[2]查晶晶, 万德成. 用OpenFOAM实现数值水池造波和消波[J]. 海洋工程, 2011, 29(3): 1-12.
CHA Jingjing, WAN Decheng. Numerical wave ge-neration and absorption based on OpenFOAM[J]. The Ocean Engineering, 2011, 29(3): 1-12.
[3]万德成, 缪国平. 数值模拟波浪翻越直立方柱[J]. 水动力学研究与进展(A辑), 1998, 13(3): 363-370.
WAN Decheng, MIAO Guoping. Numerical simulations of waves overtopping an erect quadrate column[J]. Journal of Hydrodynamics, 1998, 13(3): 363-370.
[4]CHOI J, YOON S B. Numerical simulations using momentum source wave-maker applied to RANS equation model[J]. Coastal Engineering, 2009, 56(10): 1043-1060.
[5]LARA J L, GARCIA N, LOSADA I J. RANS mo-delling applied to random wave interaction with submerged permeable structures[J]. Coastal Engineering, 2006, 53(5/6): 395-417.
[6]LIN P Z, LIU P L F. Internal wave-maker for Navier-Stokes equation models[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1999, 125(4): 207-215.
[7]CHEN Y L, HSIAO S C. Generation of 3D water waves using mass source wavemaker applied to Navier-Stokes model[J]. Coastal Engineering, 2016, 109: 76-95.
[8]HAFSIA Z, HADJ M B, LAMLOUMI H, et al. Internal inlet for wave generation and absorption treatment[J]. Coastal Engineering, 2009, 56(9): 951-959.
[9]李宏伟. 造波理论与方法研究[D]. 哈尔滨:哈尔滨工程大学, 2013.
LI Hongwei. The research on theory and method of wave-generating technology[D]. Harbin: Harbin Engineering University, 2013.
[10]PERIC R, ABDEL-MAKSOUD M. Generation of free-surface waves by localized source terms in the continuity equation[J]. Ocean Engineering, 2015, 109: 567-579.
[11]田正林, 孙昭晨, 梁书秀. 浅水中质量源造波方法[J]. 水道港口, 2017, 38(4): 325-329.
TIAN Zhenglin, SUN Zhaochen, LIANG Shuxiu. The method of mass source wavemaker in shallow water[J]. Journal of Waterway and Harbor, 2017, 38(4): 325-329.
[12]张恩臻. 数值模拟两相流求解器interFoam的应用[J]. 科技视界, 2015, 7: 5-6.
ZHANG Enzhen. The application of two-phase flow solver interFoam in numerical simulation[J]. Science & Technology Vision, 2015, 7: 5-6.
[13]邹志利, 邱大洪, 王永学. VOF方法模拟波浪槽中二维非线性波[J]. 水动力学研究与进展(A辑), 1996, 11(1): 93-103.
ZOU Zhili, QIU Dahong, WANG Yongxue. Numerical simulation of nonlinear wave generated in wave flume by VOF technique[J]. Journal of Hydrodynamics, 1996, 11(1): 93-103.
[14]董志, 詹杰民. 基于VOF方法的数值波浪水槽以及造波、消波方法研究[J]. 水动力学研究与进展(A辑), 2009, 24(1): 15-21.
DONG Zhi, ZHAN Jiemin. Comparison of existing methods for wave generating and absorbing in VOF-based numerical tank[J]. Journal of Hydrodynamics, 2009, 24(1): 15-21.
[15]WELLER H G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow[R]. London: OpenCFD, 2008.
[16]HA T, LIN P, CHO Y. Generation of 3D regular and irregular waves using Navier-Stokes equations model with an internal wave maker[J]. Coastal Engineering, 2013, 76: 55-67.
[17]BRORSEN M, LARSEN J. Source generation of nonlinear gravity waves with the boundary integral equation method[J]. Coastal Engineering, 1987, 11(2): 93-113.
[18]TROCH P, ROUCK J D. Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters[C]//26th International Conference on Engineering. Reston, VA, USA: ASCE, 1998: 1638-1649.
[19]宁德志, 滕斌, 谭丽, 等. 完全非线性聚焦波浪的数值模拟[J]. 水科学进展, 2008, 19(6): 875-881.
NING Dezhi, TENG Bin, TAN Li, et al. Numerical simulation of fully nonlinear focused wave groups[J]. Advances in Water Science, 2008, 19(6): 875-881.
[20]刘秀丽, 段梦兰, 高攀, 等. 基于OpenFOAM的数值波浪水槽研究[J]. 复旦学报(自然科学版), 2015, 54(3): 373-378.
LIU Xiuli, DUAN Menglan, GAO Pan, et al. Development of numerical wave flumes based on OpenFOAM. Journal of Fudan University (Natural Science), 2015, 54(3): 373-378.
[21]SU C S, MIRIE R M. On head-on collisions between two solitary waves[J]. Journal of Fluid Mechanics, 1980, 98(3): 509-525.