学报(中文)

水合物分解条件下海底黏土质斜坡破坏实验模拟

展开
  • 大连理工大学 海岸和近海工程国家重点实验室, 辽宁 大连 116024
宋晓龙(1990-),男,河南省濮阳市人,博士生,现主要从事岩土工程和海洋水合物方面的研究工作.

网络出版日期: 2020-01-16

基金资助

国家重点研发计划课题(2018YFC0309203),国家自然科学基金(51879036,51579032)资助项目

Experiment Simulation of Submarine Clayey Slope Failure Induced by Gas Hydrate Dissociation

Expand
  • State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China

Online published: 2020-01-16

摘要

针对水合物分解条件下海底黏土质斜坡破坏机制认识不足的问题,采用通气的方式模拟水合物分解后气体对海底斜坡的影响,开展了不同土体强度、水合物埋深、气体流量及分解范围组合条件下的多组模型实验.结合图像测量技术,深入分析了坡面及坡体的变形演化过程,初步揭示了模拟水合物分解条件下海底黏土质斜坡的变形破坏特征.在此基础上,采用极限平衡方法,建立了海底斜坡破坏时的临界气体压力解析式,从理论上解释了斜坡变形破坏过程中出现的临界气压值.研究结果表明:海底斜坡的变形破坏过程可分为气压累积、土体弹性压缩、斜坡破坏隆起和变形稳定4个阶段;气体临界压力计算结果与实验结果虽有偏差,但可在一定程度上反映临界压力的真实水平.研究成果为深入认识水合物分解条件下海底黏土质斜坡的变形破坏机制,发展稳定性分析理论和评价方法提供有益参考.

本文引用格式

宋晓龙,赵维,年廷凯,焦厚滨 . 水合物分解条件下海底黏土质斜坡破坏实验模拟[J]. 上海交通大学学报, 2020 , 54(1) : 43 -51 . DOI: 10.16183/j.cnki.jsjtu.2020.01.006

Abstract

In view of the insufficient recognition of the failure mechanism of submarine clayey slope induced by gas hydrate dissociation, the effect of gas on submarine slope after gas hydrate dissociation was simulated by means of venting. Furthermore, multiple of experiments were carried out under different combinations of soil strength, embedment depth of gas hydrate, flow rate and dissociation zone. Combining with the image processing, the deformation and the evolutionary process of slope surface and slope body were deeply investigated. The deformation and failure characteristics of submarine clayey slope induced by hydrate dissociation were initially revealed. On this basis, a limit equilibrium method was used to establish the critical pressure analytic expression of submarine slope failure, which is theoretically explained the critical pressure value in the failure process of slope deformation. The results show that the deformation and failure processes of the submarine slope are divided into four stages: the accumulation of air pressure, the elastic compression of soil, the upheaval failure of slope, and the deformation stability of slope. Although, there is a deviation between the calculated and experimental results of gas critical pressure, it can reflect the true level of the critical pressure to some extent. The research results can provide some references for the further understanding of the deformation and failure mechanism of submarine clayey slope induced by gas hydrate dissociation, and the developments of the stability analysis theory and evaluation method.

参考文献

[1]SLOAN E D. Physical/chemical properties of gas hydrates and application to world margin stability and climatic change[J]. Geological Society, London, Special Publications, 1998, 137(1): 31-50. [2]KVENVOLDEN K A. Gas hydrates: Geological perspective and global change[J]. Reviews of Geophy-sics, 1993, 31(2): 173-187. [3]HOVLAND M, GUDMESTAD O T. Potential influence of gas hydrates on seabed installations[M]//PAULL C K, DILLON W P. Natural gas hydrates: Occurrence, distribution, and detection. Washington, USA: American Geophysical Union, 2001: 307-315. [4]LI A, DAVIES R J, YANG J X. Gas trapped below hydrate as a primer for submarine slope failures[J]. Marine Geology, 2016, 380: 264-271. [5]ELGER J, BERNDT C, RPKE L, et al. Submarine slope failures due to pipe structure formation[J]. Nature Communications, 2018, 9: 715. [6]LU X B, CHEN X D, LU L, et al. Numerical simulation on the marine landslide due to gas hydrate dissociation[J]. Environmental Earth Sciences, 2017, 76(4): 172. [7]HANDWERGER A L, REMPEL A W, SKARBEK R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. [8]LI C L, WU S G, ZHU Z Y, et al. The assessment of submarine slope instability in Baiyun Sag using gray clustering method[J]. Natural Hazards, 2014, 74(2): 1179-1190. [9]AKAKI T, KIMOTO S, OKA F. Dynamic analysis of hydrate-bearing seabed sediments considering methane gas production induced by depressurization[J]. Japanese Geotechnical Society Special Publication, 2016, 2(18): 676-680. [10]MORIDIS G J, COLLETT T S, BOSWELL R, et al. Gas hydrates as a potential energy source: State of knowledge and challenges[M]//LEE J W. Advanced Biofuels and Bioproducts. New York, USA: Springer, 2013: 977-1033. [11]KLAR A, SOGA K, NG M Y A. Coupled deformation-flow analysis for methane hydrate extraction[J]. Géotechnique, 2010, 60(10): 765-776. [12]ZHANG X H, LU X B, SHI Y H, et al. Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation[J]. Ocean Engineering, 2015, 105: 1-9. [13]ZHANG X H, LU X B. Initiation and expansion of layered fracture in sediments due to thermal-induced hydrate dissociation[J]. Journal of Petroleum Science and Engineering, 2015, 133: 881-888. [14]ZHANG X H, LU X B, CHEN X D, et al. Mechanism of soil stratum instability induced by hydrate dissociation[J]. Ocean Engineering, 2016, 122: 74-83. [15]YANG S L, CHOI J C, VANNESTE M, et al. Effects of gas hydrates dissociation on clays and submarine slope stability[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(3): 941-952. [16]KWON T H, OH T M, CHOO Y W, et al. Geo-mechanical and thermal responses of hydrate-bearing sediments subjected to thermal stimulation: Physical modeling using a geotechnical centrifuge[J]. Energy & Fuels, 2013, 27(8): 4507-4522. [17]ZHANG J H, LIN H L, WANG K Z. Centrifuge modeling and analysis of submarine landslides triggered by elevated pore pressure[J]. Ocean Engineering, 2015, 109: 419-429. [18]BARRY M A, BOUDREAU B P, JOHNSON B D. Gas domes in soft cohesive sediments[J]. Geology, 2012, 40(4): 379-382. [19]魏伟, 陈旭东, 鲁晓兵, 等. 水合物分解气体泄漏引起的海床破坏实验研究[J]. 力学与实践, 2013, 35(5): 30-34. WEI Wei, CHEN Xudong, LU Xiaobing, et al. Experimental study of the sea floor damage due to gas escape in hydrate dissociation[J]. Mechanics in Engineering, 2013, 35(5): 30-34. [20]栾锡武, 孙钿奇, 彭学超. 南海北部陆架南北卫浅滩的成因及油气地质意义[J]. 地质学报, 2012, 86(4): 626-640. LUAN Xiwu, SUN Dianqi, PENG Xuechao. Genesis of the Nanbeiwei shoal on the shelf of the northern South China Sea and its petroliferous significance[J]. Acta Geologica Sinica, 2012, 86(4): 626-640. [21]HYMAN D, BURSIK M. Deformation of volcanic materials by pore pressurization: Analog experiments with simplified geometry[J]. Bulletin of Volcanology, 2018, 80(3): 19. [22]ZHENG R Y, LI S X, LI Q P, et al. Using similarity theory to design natural gas hydrate experimental model[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 421-427. [23]GALLAND O, GISLER G R, HAUG  T. Morphology and dynamics of explosive vents through cohesive rock formations[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(6): 4708-4728. [24]WEIJERMARS R, SCHMELING H. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity) [J]. Physics of the Earthand Planetary Interiors, 1986, 43(4): 316-330. [25]YUAN Q, SUN C Y, WANG X H, et al. Experimental study of gas production from hydrate dissociation with continuous injection mode using a three-dimensional quiescent reactor[J]. Fuel, 2013, 106: 417-424. [26]万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4): 117-128. WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4): 117-128. [27]朱超祁, 贾永刚, 张民生, 等. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 2016, 24(5): 863-870. ZHU Chaoqi, JIA Yonggang, ZHANG Minsheng, et al. Surface sediment strength in bed-slope of northern South China Sea[J]. Journal of Engineering Geo-logy, 2016, 24(5): 863-870. [28]HE Y, ZHONG G F, WANG L L, et al. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea[J]. Marine and Petroleum Geology, 2014, 57: 546-560.
文章导航

/