基于贝叶斯定理的Gibbs随机采样方法,结合现有异重流水卷吸实验数据,探讨了异重流水卷吸经验式中经验系数E1和E2的不确定性,获取的E1和E2样本总数为2×105.统计发现,其中概率最大的(E1,E2)样本取值与原式取值相近.将样本值输入异重流层平均水沙耦合数学模型,模拟陡坡上异重流演化过程.结果表明:计算异重流厚度、速度、泥沙体积分数、底床形变区间范围随运动距离的增加逐渐增大;采用概率最大经验系数值可能低估异重流厚度和泥沙体积分数,高估异重流速度和底床形变;95%样本输入异重流模型所得计算水力参数范围远大于25%样本所得计算水力参数范围,意味着模型对(E1,E2)的取值十分敏感.
Combining with the existing experimental data of water entrainment for turbidity currents, uncertainties of empirical coefficients, E1 and E2, in empirical formula were investigated using the method of Gibbs sampling based on Bayesian theory. A total of 2×105 sample values for E1 and E2 were obtained. Through statistics, the maximum probability (E1,E2) values are similar to the original formula. By inputting these sample values of (E1,E2) into a fully coupled mathematical model, the evolution of the turbidity currents over a steep slope is simulated. The results indicates that the range of the computed current thickness, velocity, sediment’s volume fraction and bottom deformation increases with distance. If the sample values of (E1,E2) with the highest frequency were used, the model may underestimate the current thickness and sediment volume fraction, and over-estimate the current velocity and bottom deformation. The range of hydraulic parameters calculated with 95% (E1,E2) sample values inputted into turbidity current models is much larger than that with 25% (E1,E2) sample values, which indicates that the model is very sensitive to the value of (E1,E2).
[1]MEIBURG E, KNELLER B. Turbidity currents and their deposits[J]. Annual Review of Fluid Mechanics, 2010, 42: 135-156.
[2]范家骅. 浑水异重流水量掺混系数的研究[J]. 水利学报, 2011, 42(1): 19-26.
FAN Jiahua. Studies on water entrainment coefficient of turbid density currents[J]. Journal of Hydraulic Engineering, 2011, 42(1): 19-26.
[3]贺治国, 林挺, 赵亮, 等. 异重流在层结与非层结水体中沿斜坡运动的实验研究[J]. 中国科学(技术科学), 2016, 46(6): 570-578.
HE Zhiguo, LIN Ting, ZHAO Liang, et al. Experiments on gravity currents down a ramp in unstratified and linearly stratified salt water environments[J]. Scientia Sinica (Technologica), 2016, 46(6): 570-578.
[4]王光谦, 方红卫. 异重流运动基本方程[J]. 科学通报, 1996, 41(18): 1715-1720.
WANG Guangqian, FANG Hongwei. Fundamental equations of the turbidity current evolution [J]. Chinese Science Bulletin, 1996, 41(18): 1715-1720.
[5]赵琴, 李嘉, 安瑞冬. 水库浑水异重流的两相流模型适用性研究[J]. 水动力学研究与进展A辑, 2010, 25(1): 76-84.
ZHAO Qin, LI Jia, AN Ruidong. Two-phase flow models for turbid density current in a reservoir[J]. Chinese Journal of Hydrodynamics, 2010, 25(1): 76-84.
[6]胡鹏, 胡元园, 贺治国, 等. 泥沙异重流与环境物质交换经验式对比[J]. 水科学进展, 2017, 28(2): 257-264.
HU Peng, HU Yuanyuan, HE Zhiguo, et al. Numerical comparative studies on the performances of empirical relations of mass exchanges for turbidity current[J]. Advances in Water Science, 2017, 28(2): 257-264.
[7]王增辉, 夏军强, 李涛, 等. 水库异重流一维水沙耦合模型[J]. 水科学进展, 2015, 26(1): 74-82.
WANG Zenghui, XIA Junqiang, LI Tao, et al. One-dimensional coupled model for predicting turbidity currents in reservoirs[J]. Advances in Water Science, 2015, 26(1): 74-82.
[8]PARKER G. Conditions for the ignition of catastrophically erosive turbidity currents[J]. Marine Geology, 1982, 46(3/4): 307-327.
[9]HU P, CAO Z X. Fully coupled mathematical modeling of turbidity currents over erodible bed[J]. Advances in Water Resources, 2009, 32(1): 1-15.
[10]HU P, CAO Z X, PENDER G, et al. Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China[J]. Journal of Hydrology, 2012, 464/465: 41-53.
[11]TRAER M M, HILLEY G E, FILDANI A, et al. The sensitivity of turbidity currents to mass and momentum exchanges between these underflows and their surroundings[J]. Journal of Geophysical Research: Earth Surface, 2012, 117: F01009.
[12]ELLISON T H, TURNER J S. Turbulent entrainment in stratified flows[J]. Journal of Fluid Mechanics, 1959, 6(3): 423-448.
[13]PARKER G, GARCIA M, FUKUSHIMA Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147.
[14]OTTOLENGHI L, PRESTININZI P, MONTESSORI A, et al. Lattice Boltzmann simulations of gravity currents[J]. European Journal of Mechanics B: Fluids, 2018, 67: 125-136.
[15]PARKER G, FUKUSHIMA Y, PANTIN H M. Self-accelerating turbidity currents[J]. Journal of Fluid Mechanics, 1986, 171: 145-181.
[16]HU P, PHTZ T, HE Z G. Is it appropriate to model turbidity currents with the three-equation model?[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1153-1170.
[17]HILLEY G E, MYNATT I, POLLARD D D. Structural geometry of raplee ridge monocline and thrust fault imaged using inverse boundary element modeling and ALSM data[J]. Journal of Structural Geology, 2010, 32(1): 45-58.
[18]王丙参, 魏艳华. 利用混合Gibbs算法给出广义指数分布参数的贝叶斯估计[J]. 重庆师范大学学报(自然科学版), 2016, 33(2): 73-79.
WANG Bingcan, WEI Yanhua. Bayesian estimation of the parameters of generalized exponential distribution by mixed Gibbs algorithm[J]. Journal of Chongqing Normal University (Natural Science), 2016, 33(2): 73-79.
[19]魏艳华, 王丙参. 基于MCMC方法的随机数生成研究[J]. 统计与决策, 2016(6): 13-16.
WEI Yanhua, WANG Bingcan. Research on the generation of random numbers based on MCMC method[J]. Statistics and Decision, 2016(6): 13-16.
[20]WANG Y, CAO Z J. Probabilistic characterization of Young's modulus of soil using equivalent samples[J]. Engineering Geology, 2013, 159: 106-118.
[21]GARCIA M, PARKER G. Experiments on the entrainment of sediment into suspension by a dense bottom current[J]. Journal of Geophysical Research: Oceans, 1993, 98(C3): 4793-4807.