学报(中文)

剖面似然比统计及CLs方法在PandaX-II 暗物质实验数据分析中的应用

展开
  • 1. 新疆大学 物理科学与技术学院, 乌鲁木齐 830044; 2. 上海交通大学 物理与天文学院, 上海 200240
阿布都沙拉木·阿布都克力木(1992-),男,维吾尔族,新疆维吾尔自治区喀什人,硕士生,从事暗物质直接探测方向研究.

网络出版日期: 2020-01-06

基金资助

国家自然科学基金(11365022,11435008,11455001,11505112,11525522,11765021),科技部重点研发计划(2016YFA0400301)资助项目

Application of Profile Likelihood Ratio and CLs Method in Data Analysis of PandaX-II Dark Matter Experiment

Expand
  • 1. School of Physics and Technology, Xinjiang University, Urumqi 830044, China; 2. School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-01-06

摘要

目前世界上最为领先的几个暗物质直接探测实验都使用了剖面似然比方法来对最终的暗物质数据进行统计学分析,其中PandaX-II 实验最近发表的结果结合剖面似然比统计和CLs方法给出了对暗物质与核子若干相互作用截面的限制.本文在描述该统计方法的基础上,以PandaX-II 实验中的数据分析为例,介绍了具体的剖面似然比的构造方式,再应用CLs方法给出暗物质与普通物质发生非弹性散射的截面上限.

本文引用格式

阿布都沙拉木·阿布都克力木,谌勋,吾尔尼沙·依明尼亚孜 . 剖面似然比统计及CLs方法在PandaX-II 暗物质实验数据分析中的应用[J]. 上海交通大学学报, 2019 , 53(12) : 1508 -1514 . DOI: 10.16183/j.cnki.jsjtu.2019.12.015

Abstract

The profile likelihood ratio statistics is used in the leading dark matter direct detection experiments around the world to perform the statistical analysis on the data. The results recently published in PandaX-II experiment present several constraints on the cross sections of dark matter scattering off nucleon via profile likelihood ratio and CLs method. This article introduces profile likelihood ratio and CLs method in detail and discusses how to construct profile likelihood ratio with the data analysis of PandaX-II as an example. The upper limits of the inelastic scattering cross section between dark matter particle and nucleon are obtained with CLs method.

参考文献

[1]BERTONE G, HOOPER D, SILK J. Particle dark matter: Evidence, candidates and constraints[J]. Physics Reports, 2005, 405(5/6): 279-390. [2]ZUREK K M. Asymmetric dark matter: Theories, signatures, and constraints[J]. Physics Reports, 2014, 537(3): 91-121. [3]JUNGMAN G, KAMIONKOWSKI M, GRIEST K. Supersymmetric dark matter[J]. Physics Reports, 1996, 267(5/6): 195-373. [4]TAN A, XIAO M, CUI X, et al. Dark matter results from first 98.7 day of data from the PandaX-II experiment[J]. Physical Review Letters, 2016, 117(12): 121303. [5]AKERIB D S, ALSUM S, ARAJO H M, et al. Results from a search for dark matter in the complete LUX exposure[J]. Physical Review Letters, 2017, 118(2): 021303. [6]CUI X, ABDUKERIM A, CHEN W, et al. Dark matter results from 54-ton-day exposure of PandaX-II experiment[J]. Physical Review Letters, 2017, 119(18): 181302. [7]APRILE E, AALBERS J, AGOSTINI F, et al. First dark matter search results from the XENON1T experiment.[J]. Physical Review Letters, 2017, 119(18): 181301. [8]FU C, CUI X, ZHOU X, et al. Spin-dependent weakly-interacting-massive-particle-nucleon cross section limits from first data of PandaX-II experiment[J]. Physical Review Letters, 2017, 118(7): 071301. [9]FU C, ZHOU X, CHEN X, et al. Limits on axion couplings from the first 80 days of data of the PandaX-II experiment[J]. Physical Review Letters, 2017, 119(18): 181806. [10]CHEN X, ABDUKERIM A, CHEN W, et al. Exploring the dark matter inelastic frontier with 79.6 days of PandaX-II data[J]. Physical Review D, 2017, 96(10): 102007. [11]APRILE E, ARISAKA K, ARNEODO F, et al. Likelihood approach to the first dark matter results from XENON100[J]. Physical Review D, 2011, 84(5): 052003. [12]READ A L. Presentation of search results: The CLs technique[J]. Journal of Physics G: Nuclear and Particle Physics, 2002, 28(10): 2693-2704. [13]TAN A, XIAO X, CUI X, et al. Dark matter search results from the commissioning run of PandaX-II[J]. Physical Review D, 2016, 93(12): 122009. [14]LEWIN J D, SMITH P F. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil[J]. Astro-particle Physics, 1996, 6(1): 87-112. [15]APRILE E, DOKE T. Liquid xenon detectors for particle physics and astrophysics[J]. Reviews of Modern Physics, 2010, 82(3): 2053. [16]GATES E I, GYUK G, TURNER M S. The local halo density[J]. The Astrophysical Journal, 1995, 449(2): L123-L126. [17]COWAN G, CRANMER K, GROSS E, et al. Asymptotic formulae for likelihood-based tests of new physics[J]. The European Physical Journal C, 2011, 71(2): 1-19. [18]BERNABEI R, BELLI P, CAPPELLA F, et al. Final model independent result of DAMA/LIBRA-phase1[J]. The European Physical Journal C, 2013, 73(12): 2648. [19]SMITH D, WEINER N. Inelastic dark matter[J]. Physical Review D, 2001, 64(4): 043502. [20]CHANG S, KRIBS G D, TUCKER-SMITH D, et al. Inelastic dark matter in light of DAMA/LIBRA[J]. Physical Review D, 2009, 79(4): 043513. [21]BRAMANTE J, FOX P J, KRIBS G D, et al. In-elastic frontier: Discovering dark matter at high recoil energy[J]. Physical Review D, 2016, 94: 115026. [22]LENARDO B, KAZKAZ K, MANALAYSAY A, et al. A global analysis of light and charge yields in li-quid xenon[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 3387-3396. [23]AGOSTINELLI S, ALLISON J, AMAKO K, et al. GEANT4: A simulation toolkit [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
文章导航

/