学报(中文)

沉积路径对激光增材制造结构件残余应力的影响

展开
  • 1. 南昌大学 机电工程学院, 南昌 330031; 2. 九江学院 机械与材料工程学院, 九江 332005
张义福(1984-),男,江西省上饶市人,博士生,讲师.主要从事异质金属焊接中多相IMCS调控与激光沉积制造研究.

网络出版日期: 2020-01-06

基金资助

国家自然科学基金委员会-中国科学院天文联合基金 (U1731118),江西省轻质高强结构材料重点实验室开放基金(20171BCD40003)资助项目

Effect of Deposition Path on Residual Stresses of Laser Additive Manufacturing Structures

Expand
  • 1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China; 2. School of Mechanics and Materials Engineering, Jiujiang University, Jiujiang 332005, China

Online published: 2020-01-06

摘要

以H13工具钢粉末为原材料,使用激光金属沉积技术快速成形薄壁结构件.采用Fluent开发气体/金属粉末流计算流体动力学(CFD)模型,分析强制对流热损失参数.建立沉积过程热流本构方程,采用生死单元技术模拟金属沉积,基于APDL语言进行编译加载,实现激光金属沉积3D热-力顺序耦合有限元模拟.分析沉积路径对薄壁结构热分布和残余应力场分布不同模式的影响.结果表明:直壁结构拐角局部存在超过工件拉伸强度的残余拉应力,从而导致裂纹生成;与单向沉积路径不同,之字形沉积路径在沉积层中诱导不同符号的残余切应力;单向沉积壁温度梯度相对较低,其残余应力略低于之字形沉积壁,但成形结构件的整体质量较低;残余应力计算结果与实验测量值相吻合,可为特定零件几何形状沉积提供参考.

本文引用格式

张义福,张华,朱政强,苏展展 . 沉积路径对激光增材制造结构件残余应力的影响[J]. 上海交通大学学报, 2019 , 53(12) : 1488 -1494 . DOI: 10.16183/j.cnki.jsjtu.2019.12.012

Abstract

H13 tool steel powder is used as a raw material to rapidly form thin-walled structures using laser metal deposition technology. The gas/metal powder flow computational fluid dynamics (CFD) model was developed using Fluent software to analyze the forced convection heat loss parameters. The heat flow constitutive equations of the deposition process are established, the metal deposition is simulated using the life-and-death element technology, and the 3D thermo-mechanical sequential coupled finite element simulation of the laser metal deposition is performed based on the APDL language. The effects of deposition paths on the thermal distribution and residual stress field distribution of thin-walled structures were analyzed. The results show that there is a local residual tensile stress exceeding the tensile strength of the workpiece in the corners of the straight wall structure, resulting in cracks. Unlike the one-way deposition path, the zig-zag deposition path induces different symbolic residual shear stresses in the subsequent deposition layer. The temperature gradient of the one-way deposition wall is relatively low, and the residual stress is slightly lower than the zig-zag deposition wall, but the quality of the formed structures is low. The residual stress calculation results are in agreement with the experimental measurements, and can provide operation references for the deposition of specific part geometry.

参考文献

[1]MAZUMDER J, CHOI J, NAGARATHNAM K, et al. The direct metal deposition of H13 tool steel for 3-D components [J]. JOM, 1997, 49(5): 55-60. [2]HOFMEISTER W, GRIFFITH M. Solidification in direct metal deposition by LENS processing [J]. JOM, 2001, 53(9): 30-34. [3]READY J F, FARSON D F. LIA handbook of laser material processing[M]. USA: Laser Institute of America Magnolia Publishing, Inc, 2001. [4]BRANDL E, PALM F, MICHAILOV V, et al. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire[J]. Materials & Design, 2011, 32(10): 4665-4675. [5]VASINONTA A, BEUTH J L, GRIFFITH M. Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1): 101-109. [6]FU C H, GUO Y B. Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V [J]. Journal of Manufacturing Science & Engineering, 2014, 136(6): 061004. [7]CHENG B, SHRESTHA S, CHOU K. Stress and deformation evaluations of scanning strategy effect in selective laser melting [J]. Additive Manufacturing, 2016, 12: 240-251. [8]SCHOINOCHORITIS B, CHANTZIS D, SALONITIS K. Simulation of metallic powder bed additive manufacturing processes with the finite element me-thod: A critical review[J]. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, 2017, 231(1): 96-117. [9]RANGASWAMY P, HOLDEN T M, ROGGE R B, et al. Residual stresses in components formed by the laserengineered net shaping (LENS) process [J]. The Journal of Strain Analysis for Engineering Design, 2003, 38(6): 519-527. [10]LUO Z B, ZHAO Y Y. A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing [J]. Additive Manufacturing, 2018, 21: 318-332. [11]STEEN W M, MAZUMDER J. Laser material processing [M]. 4th ed. Berlin: Springer Science & Business Media, 2010. [12]Bohler-Uddeholm Corp. Bohler-Uddeholm H13 tool steel [DB/OL]. (2013-01-07)[2018-4-20]. http://www.bucorp.com/bu_h13 _h.htm. [13]International Mold Steel, Inc. Plastic mold steels DH2F [DB/OL]. [2018-4-20]. http://www.imsteel.com/plastic_mold_ steels/dh2f/dh2f_home.htm. [14]BROOKS J, ROBINO C, HEADLEY T, et al. Microstructure and property optimization of LENS deposited H13 tool steel[C]//Proceedings of the Solid Freeform Fabrication Symposium. Austin: The University of Texas at Austin, 1999: 375-382. [15]VAKILI-TAHAMI F, ZIAEI-ASL A. Numerical and experimental investigation of T-shape fillet wel-ding of AISI 304 stainless steel plates [J]. Materials & Design, 2013, 47(9): 615-623. [16]PRATT P, FELICELLI S D, WANG L, et al. Residual stress measurement of laser-engineered net shaping AISI 410 thin plates using neutron diffraction[J]. Metallurgical and Materials Transactions A, 2008, 39(13): 3155-3163.
文章导航

/