学报(中文)

离心压气机无叶扩压器非定常流动本征正交分解法

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
杨晓建(1992-),男,河北省衡水市人,硕士生,主要从事叶轮机械方面的研究.

网络出版日期: 2020-01-06

Unsteady Flow Filed Study of Vaneless Diffuser in a Centrifugal Compressor Using Proper Orthogonal Decomposition Method

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-01-06

摘要

为了研究带有无叶扩压器的离心压气机内部的非稳定流动特征,针对某离心压气机的非定常数值模拟结果,通过本征正交分解 (POD) 法分析小流量工况下无叶扩压器内部的非稳定流动.研究结果表明:无叶扩压器的内部流场主要受上游叶轮及下游蜗壳的影响;POD法成功地捕捉到了叶片扫描频率所对应的射流-尾迹结构以及低频率的非稳定流动模态;非稳定模态的特征频率为22104Hz,周向存在多个扰动,并且该扰动以径向波动为主,在周向并不传播;非稳定模态的重构结果可以直观地展示失稳流动的发展过程;流场快照的采样频率对POD法所获得的结果有所影响.

本文引用格式

杨晓建,胡晨星,竺晓程,杜朝辉 . 离心压气机无叶扩压器非定常流动本征正交分解法[J]. 上海交通大学学报, 2019 , 53(12) : 1450 -1458 . DOI: 10.16183/j.cnki.jsjtu.2019.12.007

Abstract

To investigate the unstable flow characteristics inside the centrifugal compressor with a vaneless diffuser, the proper orthogonal decomposition (POD) method was applied to the unsteady numerical simulation results to analyze the unsteady flow inside the vaneless diffuser under small flow conditions. The results indicate that the fluid field of vaneless diffuser is mainly influenced by the upstream blades and the downstream volute. In addition, POD method is capable of capturing the jet-wake flow structure, of which the characteristic frequency equals the blade passing frequency, as well as the unstable mode with low frequency. The characteristic frequency of the unstable mode is 22104Hz, and there exists several perturbations in different circumferential positions. These perturbations are mainly radial fluctuation but do not propagate in the circumferential direction. The reconstruction result of the unstable mode can visually show the development of the corresponding unstable flow. The sampling frequency of the flow field snapshots has an effect on the result of POD method.

参考文献

[1]MIZUKI S, OOSAWA Y. Unsteady flow within centrifugal compressor channels under rotating stall and surge[J]. Journal of Turbomachinery, 1992, 114(2): 312-320. [2]SHAABAN S. Design optimization of a centrifugal compressor vaneless diffuser[J]. International Journal of Refrigeration, 2015, 60: 142-154. [3]GALERKIN Y,SOLDATOVA K,SOLOVIEVA O. Numerical study of centrifugal compressor stage vaneless diffusers [C]//9th International Conference on Compressors and Their Systems. IOP Conference Series: Materials Science and Engineering. London, UK: IOP Publishing 2015, 90(1): 012048. [4]FRIGNE P, VAN DEN BRAEMBUSSCHE R. Distinction between different types of impeller and diffuser rotating stall in a centrifugal compressor with vaneless diffuser[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2): 468-474. [5]BIANCHINI A, BILIOTTI D, RUBINO D T, et al. Experimental analysis of the pressure field inside a vaneless diffuser from rotating stall inception to surge[J]. Journal of Turbomachinery, 2015, 137(11): 111007. [6]JAATINEN-VRRI A, GRNMAN A, TURUNEN-SAARESTI T, et al. Investigation of the stage performance and flow fields in a centrifugal compressor with a vaneless diffuser[DB/OL].(2014-07-23)[2018-01-20]. https://www.hindawi.com/journals/ijrm/2014/139153/abs/. [7]TAMAKI H. Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser[J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1627-1633. [8]TURUNEN-SAARESTI T, LARJOLA J. Unsteady pressure field in a vaneless diffuser of a centrifugal compressor: An experimental and computational ana-lysis[J]. Journal of Thermal Science, 2004, 13(4): 302-309. [9]ABDELWAHAB A. Numerical investigation of the unsteady flow fields in centrifugal compressor diffu-sers[C]//ASME Turbo Expo 2010: Power for land, sea, and air. Glasgow. Scotland, UK: American Society of Mechanical Engineers Digital Collection, 2010: 2405-2418. [10]ZHENG X Q, LIU A X, SUN Z Z. Investigation of the instability mechanisms in a turbocharger centrifugal compressor with a vaneless diffuser by means of unsteady simulations[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(11): 1558-1567. [11]郭强. 带无叶扩压器的离心压缩机失速现象的实验和数值研究[D]. 上海: 上海交通大学, 2007. GUO Qiang. Experimental and numerical investigation on stall flow phenomenon in the centrifugal compressor with vaneless diffuser[D]. Shanghai: Shanghai Jiao Tong University, 2007. [12]ZHU X, JIA K, DU Z. Prediction of centrifugal compressor performance from choke through stall with a physical throttle[C]//ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montreal, Canada: American Society of Mechanical Engineers Digital Collection, 2015: V02CT44A014. [13]SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. [14]SIROVICH L. Turbulence and the dynamics of coherent structures. Part I: Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571. [15]CIZMAS P G A, PALACIOS A. Proper orthogonal decomposition of turbine rotor-stator interaction[J]. Journal of Propulsion and Power, 2003, 19(2): 268-281. [16]WEI Z Y, ZANG B, NEW T H, et al. A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles[J]. Ocean Engineering, 2016, 121: 356-368. [17]YANG J Z, LIU M H, WU G, et al. On the unsteady wake dynamics behind a circular disk using fully 3D proper orthogonal decomposition[J]. Fluid Dynamics Research, 2017, 49(1): 015510. [18]GUO Q, CHEN H, ZHU X C, et al. Numerical simulations of stall inside a centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(A5): 683-693.
文章导航

/