学报(中文)

船舶自主避碰的慎思型轨迹规划

展开
  • 1. 上海交通大学 高新船舶与深海开发装备协同创新中心, 上海 200240; 2. Marine Technology Department, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
上海交通大学海洋工程国家重点实验室自主研究课题(GKZD010061)

网络出版日期: 2020-01-06

基金资助

上海交通大学海洋工程国家重点实验室自主研究课题(GKZD010061)

Deliberative Trajectory Planning for Shipborne Autonomous Collision Avoidance System

Expand
  • 1. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Marine Technology Department, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Online published: 2020-01-06

摘要

基于快速扩展随机树(RRT)算法,提出一种适用于船舶自主避碰的慎思型轨迹规划(DTP)算法,能够耦合处理静态障碍物约束、船舶操纵性约束、轨迹最优性等限制条件,在两个长程路径点之间完成全局轨迹规划,以保证规划轨迹的可行性、完备性和最优性.通过一条案例三体船的自主避碰仿真及航行试验,从多方面验证了所提DTP算法的有效性、优越性和稳定性,对研究船舶自主避碰系统及其应用前景具有重要的意义.

本文引用格式

杨荣武,许劲松,王鑫 . 船舶自主避碰的慎思型轨迹规划[J]. 上海交通大学学报, 2019 , 53(12) : 1411 -1419 . DOI: 10.16183/j.cnki.jsjtu.2019.12.003

Abstract

Based on rapidly-exploring random tree (RRT) algorithm, a deliberative trajectory planner DTP was developed to search for global trajectory between the adjacent waypoints of the long voyage. The static obstacle constraints, ship maneuvering constraints, and trajectory optimality requirements are satisfied simultaneously to ensure the feasibility, completeness and optimality in planning. Through simulations and on-water tests of a trimaran model, the proposed DTP method was demonstrated to be effective, superior and stable for the autonomous collision avoidance. The present work provides an important basis for subsequent research and future application.

参考文献

[1]MANKABADY S. The international maritime orga-nization, volume 1: International shipping rules[M]. London, UK: Croom Helm Ltd, 1986: 200-250. [2]European Maritime Safety Agency (EMSA). Annual overview of marine casualties and incidents[R/OL].(2017-11-13)[2018-04-11].http://www.emsa.europa.eu/emsa-documents/latest/item/3156-annual-overview-of-marine-casualties-and-incidents-2017.html. [3]DNV GL. Autonomous and remotely operated ships: DNVGL-CG-0264 [S]. Norway: DNV GL, 2018: 50-66. [4]CAMPBELL S, NAEEM W, IRWIN G W. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance mano-euvres[J]. Annual Reviews in Control, 2012, 36(2): 267-283. [5]LOE  A G. Collision avoidance for unmanned surface vehicles[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2008. [6]BERTASKA I R, SHAH B, VON ELLENRIEDER K, et al. Experimental evaluation of automatically-generated behaviors for USV operations[J]. Ocean Engineering, 2015, 106: 496-514. [7]COWLAGI R V, TSIOTRAS P. Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles[J]. IEEE Transactions on Robotics, 2012, 28(2): 379-395. [8]LAVALLE S M. Planning algorithms [M]. Cambridge, England, UK: Cambridge University Press, 2006: 228-237. [9]YANG R, XU J, WANG X, et al. Parallel trajectory planning for shipborne autonomous collision avoidance system[J]. Applied Ocean Research, 2019, 91: 101875. [10]GREYTAK M B, HOVER F S. Robust motion planning for marine vehicle navigation[C]//The Eighteenth International Offshore and Polar Engineering Conference. Vancouver, BC, Canada: International Society of Offshore and Polar Engineers, 2008: ISOPE-I-08-039. [11]TAN C S, SUTTON R, CHUDLEY J. Quasi-random, manoeuvre-based motion planning algorithm for autonomous underwater vehicles[DB/OL].(2015-03-02)[2018-04-11]. https://www.sciencedirect.com/science/article/pii/S147466701637971X. [12]KATSUNO K. On the maneuvering performance of a ship with the parameter of loading condition[J]. Journal of the Society of Naval Architects of Japan, 1990(168): 141-148. [13]盛振邦, 刘应中. 船舶原理[M]. 上海: 上海交通大学出版社, 2004: 279. SHENG Zhenbang, LIU Yingzhong. Ship theory[M]. Shanghai: Shanghai Jiao Tong University Press, 2004: 279. [14]FOSSEN T I, SAGATUN S I, SORENSEN A J. Identification of dynamically positioned ships[J]. Control Engineering Practice, 1996, 4(3): 369-376.
文章导航

/