学报(中文)

随机波浪作用下自升式平台的极值响应估计

展开
  • 上海交通大学 船舶海洋与建筑工程学院, 上海 200240
许超超 (1993-),男,浙江省宁波市人,硕士生,研究方向为结构可靠度计算.

网络出版日期: 2020-01-06

基金资助

工信部高技术船舶科研项目深水半潜式支持平台研发——平台振动与噪声控制技术研究项目;上海市自然科学基金项目(16ZR1417300)

Extreme Response Estimate of Jack-Up Platforms Under the Action of Random Wave Loads

Expand
  • School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-01-06

摘要

提出一种用于估计随机波浪载荷作用下自升式海洋平台极值响应的参数化方法.该方法采用移位广义对数正态分布模型近似计算平台随机响应的极值分布,由紧邻分布尾部的两个支撑点及其超越概率估计模型参数,从而减少估计极值响应分布尾部所需的响应样本容量.将所提出方法用于某实际平台的极值响应分析的结果表明,该方法具有数值精度高和计算费用小的优点,适用于随机波浪载荷作用下自升式平台的可靠性及风险评估.

本文引用格式

许超超,倪萍,顾颖,何军 . 随机波浪作用下自升式平台的极值响应估计[J]. 上海交通大学学报, 2019 , 53(12) : 1404 -1410 . DOI: 10.16183/j.cnki.jsjtu.2019.12.002

Abstract

For estimating the extreme response of the jack-up platform, a parametric method under the action of random wave loads is developed. The method approximates the extreme distribution of the stochastic response of the platform by using the shifted generalized lognormal distribution model. The model parameters are estimated by two supporting points and their exceeding probability in the adjacent tail distribution such that the size of the needed samples is reduced significantly. The extreme response analysis of a real platform shows that the proposed method has enough high numerical accuracy and needs relatively few computational costs, which is suitable for the reliability and risk assessment of the jack up platform under the action of random wave loads.

参考文献

[1]SHINOZUKA M. Monte Carlo solution of structural dynamics[J]. Computers & Structures, 1972, 2(5/6): 855-874. [2]BUCHER C. Asymptotic sampling for high-dimensional reliability analysis[J]. Probabilistic Engineering Mechanics, 2009, 24(4): 504-510. [3]LUCA G, ARMEN D K. Tail-Equivalent Linearization Method in frequency domain and application to marine structures [J]. Marine Structures, 2010, 23(3): 322-338. [4]BALESDENT M, MORIO J, MARZAT J. Kriging-based adaptive Importance Sampling algorithms for rare event estimation[J]. Structural Safety, 2013, 44(2334): 1-10. [5]HE J, GONG J. Estimate of small first passage probabilities of nonlinear random vibration systems by using tail approximation of extreme distributions[J]. Structural Safety, 2016, 60: 28-36. [6]HE J. Approximate method for estimating extreme value responses of nonlinear stochastic dynamic systems[J]. Journal of Engineering Mechanics, 2015, 141(7): 04015009. [7]JENSEN J J, CAPUL J. Extreme response predictions for jack-up units in second order stochastic waves by FORM[J]. Probabilistic Engineering Mechanics, 2006, 21(4): 330-337. [8]MADSEN H O, KRENK S, LIND N C. Methods of structural safety[M]. NY, USA: Prentice-Hall Inc, 1986: 50-63. [9]LOW Y M. A new distribution for fitting four moments and its applications to reliability analysis[J]. Structural Safety, 2013, 42(3): 12-25. [10]CASSIDY M J, TAYLOR R E, HOULSBY G T. Analysis of jack-up units using a constrained NewWave methodology[J]. Applied Ocean Research, 2001, 23(4): 221-234.
文章导航

/