学报(中文)

多道次普旋预成形阶段法兰起皱预测

展开
  • 1. 上海交通大学 上海市复杂薄板结构数字化制造重点实验室, 上海 200240; 2. 莫斯科国立鲍曼技术大学 制造技术教研室,莫斯科 105005, 俄罗斯
李雪龙(1994-),男,安徽省蚌埠市人,硕士生,从事薄板塑性成形技术研究.

网络出版日期: 2019-12-11

基金资助

国家自然科学基金(51675333,51875352,51790175),国家重点基础研究发展规划(973)(2014CB046601)资助项目

Study on Flange Wrinkling Prediction in Preforming Stage During Multi-Pass Conventional Spinning

Expand
  • 1. Shanghai Key Laboratory of Digital Manufacture for Thin-Wall Structures, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Faculty MT6, Bauman Moscow State Technical University, Moscow 105005, Russia

Online published: 2019-12-11

摘要

多道次普旋包括贴模阶段和预成形阶段,本文主要聚焦于预成形阶段法兰起皱预测.根据普旋预成形阶段变形特征,提出法兰失稳区域内侧为简支条件,外侧为自由边界条件的假设,并推导出符合边界条件用来描述起皱波形的挠度曲面方程.基于能量法建立了法兰起皱预测模型,结合从普旋数值仿真获得的应力场和几何信息,完成了预成形阶段法兰起皱预测.与铝合金半球形构普旋试验对比表明,所建立的预测模型可以准确评估预成形阶段法兰起皱现象.

本文引用格式

李雪龙,于忠奇,赵亦希,EVSYUKOV S A . 多道次普旋预成形阶段法兰起皱预测[J]. 上海交通大学学报, 2019 , 53(11) : 1375 -1380 . DOI: 10.16183/j.cnki.jsjtu.2019.11.014

Abstract

The multi-pass conventional spinning includes the shaping stage and preforming stage. This paper focuses on the flange wrinkling prediction in the preforming stage. According to the deformation characteristics in the preforming stage, the assumptions that the inner side of the instability region at the flange is a simple support condition and the outside is a free boundary condition are proposed, and the deflection surface equation for describing the wrinkling wave shape that meets the boundary conditions is established. The prediction model of the flange wrinkling is developed based on the energy method. Combining the geometries and the stress fields in the conventional spinning numerical simulation, the flange wrinkling prediction in the preforming stage is realized. Compared with the spinning experiment in an aluminum alloy hemispherical component, the developed model can accurately predict the flange wrinkling in the preforming stage.

参考文献

[1]杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10): 2534-2550. YANG He, ZHAN Mei, LI Tian, et al. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2534-2550. [2]LIU J H, YANG H, LI Y Q. A study of the stress and strain distributions of first-pass conventional spinning under different roller-traces[J]. Journal of Materials Processing Technology, 2002, 129(1/2/3): 326-329. [3]WANG X, CAO J. On the prediction of side-wall wrinkling in sheet metal forming processes[J]. International Journal of Mechanical Sciences, 2000, 42(12): 2369-2394. [4]YANG H, LIN Y. Wrinkling analysis for forming limit of tube bending processes[J]. Journal of Materials Processing Technology, 2004, 152(3): 363-369. [5]SHAFAAT M A, ABBASI M, KETABCHI M. Investigation into wall wrinkling in deep drawing process of conical cups[J]. Journal of Materials Processing Technology, 2011, 211(11): 1783-1795. [6]CHEN Y Z, LIU W, ZHANG Z C, et al. Analysis of wrinkling during sheet hydroforming of curved surface shell considering reverse bulging effect[J]. International Journal of Mechanical Sciences, 2017, 120: 70-80. [7]XIA Q X, SHIMA S, KOTERA H, et al. A study of the one-path deep drawing spinning of cups[J]. Journal of Materials Processing Technology, 2005, 159(3): 397-400. [8]ZHANG Y Q, SHAN D B, XU W C, et al. Study on spinning process of a thin-walled aluminum alloy vessel head with small ratio of thickness to diameter[J]. Journal of Manufacturing Science and Engineering, 2010, 132(1): 014504. [9]宋晓飞, 詹梅, 蒋华兵, 等. 铝合金大型复杂薄壁壳体多道次旋压缺陷形成机理[J]. 塑性工程学报, 2013, 20(1): 31-36. SONG Xiaofei, ZHAN Mei, JIANG Huabing, et al. Forming mechanism of defects in spinning of large complicated thin-wall aluminum alloy shells[J]. Journal of Plasticity Engineering, 2013, 20(1): 31-36. [10]史敏, 赵亦希, 孔庆帅, 等. 薄壁铝合金封头挡板辅助旋压成形方法[J]. 上海交通大学学报, 2015, 49(10): 1497-1503. SHI Min, ZHAO Yixi, KONG Qingshuai, et al. Baffle-assistant spinning method for thin-walled aluminum alloy seal head[J]. Journal of Shanghai Jiao Tong University, 2015, 49(10): 1497-1503. [11]KONG Q S, YU Z Q, ZHAO Y X, et al. Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part[J]. Journal of Materials Processing Technology, 2017, 246: 56-68. [12]TIMOSHENKO S P, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. 2nd ed. New York: McGraw-Hill, 1959. [13]GAN T, YU Z Q, ZHAO Y X, et al. Effects of backward path parameters on formability in conventional spinning of aluminum hemispherical parts [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 328-339.
文章导航

/