学报(中文)

橡胶O形圈/不锈钢配副往复摩擦生热特性

展开
  • 1. 浙江工业大学 过程装备及其再制造教育部工程研究中心, 杭州 310032; 2. 上海交通大学 机械与动力工程学院, 上海 200240
孔亚彬(1993-),男,山东省临沂市人,硕士生,主要研究方向为橡塑密封.

网络出版日期: 2019-12-11

基金资助

国家自然科学基金(51775503),浙江省自然科学基金(LY17E050020),中国博士后科学基金(2017M620152)资助项目

Thermal Characteristics of Reciprocating Friction of Rubber O-Ring Against Stainless Steel Surface

Expand
  • 1. Ministry of Education Engineering Research Center of Process Equipment and Its Remanufacture, Zhejiang University of Technology, Hangzhou 310032, China; 2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-12-11

摘要

采用含高阶项的Mooney-Rivlin本构模型对丁腈橡胶O形圈/316L不锈钢配副的往复摩擦生热特性进行有限元分析及试验验证.利用变参数法分析往复频率、摩擦系数、接触压力及环境温度对配副金属温度场的影响.结果表明:所建模型能较准确地分析橡胶/金属摩擦界面的摩擦生热特性.随着往复频率、摩擦系数和接触压力的增大,稳定阶段摩擦界面的温度升高;摩擦界面温升速率与初始环境温度无关;摩擦界面温度的稳定值与往复运动频率呈线性变化关系,与摩擦系数和接触压力呈“抛物线”状递增关系;摩擦过程中靠近摩擦热源的区域等温线较密集,温度梯度较大.

本文引用格式

孔亚彬,沈明学,张执南,孟祥铠,彭旭东 . 橡胶O形圈/不锈钢配副往复摩擦生热特性[J]. 上海交通大学学报, 2019 , 53(11) : 1352 -1358 . DOI: 10.16183/j.cnki.jsjtu.2019.11.011

Abstract

The thermal characteristics of reciprocating friction of the nitrile rubber O-ring against stainless steel surface were successfully simulated by FEA (finite element analysis) and varified by experiments base on the Mooney-Rivlin model with high-order terms. The effects of reciprocating frequency, friction coefficient, contact pressure and ambient temperature on the temperature field of counterpart were investigated by using variable parameter method. Results showed that the FEA model could accurately analyze the characteristics of frictional heat generation at the rubber/metal friction interface. The temperature of the friction interface during the steady phase increased with increase of reciprocating frequency, friction coefficient and contact pressure. The temperature rise rate of the friction interface was independent of the initial ambient temperature. The stable value of the friction interface temperature had a linear relationship with the reciprocating frequency and had a positive parabolic relationship with the friction coefficient and the contact pressure. Zones close to the friction heat source had dense isotherms and great temperature gradient.

参考文献

[1]LANG A, KLPPEL M. Influences of temperature and load on the dry friction behaviour of tire tread compounds in contact with rough granite[J]. Wear, 2017, 380: 15-25. [2]赵良举, 赵向雷, 杜长春, 等. 橡胶油封唇口温度及其对润滑失效影响[J]. 机械科学与技术, 2014, 33(6): 840-844. ZHAO Liangju, ZHAO Xianglei, DU Changchun, et al. Rubber oil seal lip temperature and its effect on lubrication failure [J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 840-844. [3]ROWE K G, BENNETT A I, KRICK B A, et al. In situ thermal measurements of sliding contacts[J]. Tribology International, 2013, 62: 208-214. [4]TZANAKIS I, CONTE M, HADFIELD M, et al. Experimental and analytical thermal study of PTFE composite sliding against high carbon steel as a function of the surface roughness, sliding velocity and applied load[J]. Wear, 2013, 303(1): 154-168. [5]CONTE M, PINEDO B, IGARTUA A. Frictional heating calculations for polymers[J]. Surface Effects and Contact Mechanics XI: Computational Methods and Experiments, 2013, 78: 3-12. [6]FRLICH D, MAGYAR B, SAUER B, et al. A comprehensive model of wear, friction and contact temperature in radial shaft seals[J]. Wear, 2014, 311(1): 71-80. [7]KALIN M. Influence of flash temperatures on the tribological behaviour in low-speed sliding: A review[J]. Materials Science and Engineering: A, 2004, 374(1): 390-397. [8]杨秀萍, 于润生, 刘学新. 密封圈热-结构耦合场参数化有限元分析[J]. 橡胶工业, 2015, 62(9): 547-551. YANG Xiuping, YU Runsheng, LIU Xuexin. Parametric finite element analysis of thermal-structure couple on seal ring[J]. China Rubber Industry, 2015, 62(9): 547-551. [9]桑建兵, 邢素芳, 刘宝会, 等. 旋转轴唇形密封圈的有限元分析与仿真[J]. 液压与气动, 2013 (5): 114-117. SANG Jianbing, XING Sufang, LIU Baohui, et al. Finite element analysis and simulation on rotary shaft lip seal[J]. Chinese Hydraulics & Pneumatics, 2013(5): 114-117. [10]郑金鹏, 沈明学, 孟祥铠, 等. 机械密封用O形橡胶密封圈微动特性[J]. 上海交通大学学报, 2014, 48(6): 856-862. ZHENG Jinpeng, SHEN Mingxue, MENG Xiangkai, et al. Fretting characteristics of the rubber O-ring for a mechanical seal[J]. Journal of Shanghai Jiao Tong University, 2014, 48(6): 856-862. [11]马红玉, 彭旭东. 气体压缩机高聚物摩擦部件的温升研究[J]. 流体机械, 2003, 31(8): 14-17. MA Hongyu, PENG Xudong. Study on frictional temperature rises of polymer-composite matrix parts for gas compressors[J]. Fluid Machinery, 2003, 31(8): 14-17. [12]KENNEDY F E, LU Y, BAKER I. Contact tempera-tures and their influence on wear during pin-on-disk tribotesting[J]. Tribology International, 2015, 82: 534-542. [13]石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社, 2006. SHI Y P, ZHOU Y R. Examples of ABAQUS finite element analysis[M]. Beijing: Machine Press, 2006. [14]许曼曼, 赵良举, 杜长春, 等. 往复式密封件泵汲率及生热量研究[J]. 润滑与密封, 2014, 39(9): 57-62. XU Manman, ZHAO Liangju, DU Changchun, et al. Study of heat generating and pumping effect of reciprocating seals[J]. Lubrication Engineering, 2014, 39(9): 57-62. [15]刘莹, 胡育勇, 宋涛, 等. 风力发电机主轴制动器摩擦副温度场分析[J]. 润滑与密封, 2015, 40(3): 35-39. LIU Ying, HU Yuyong, SONG Tao, et al. Analysis of temperature field of friction pairs for spindle brake of wind turbine[J]. Lubrication Engineering, 2015, 40(3): 35-39.
文章导航

/