学报(中文)

基于时间序列分析的电容器退化模型

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
张田(1993-),女,上海市人,硕士生,主要从事质量及可靠性工程研究.

网络出版日期: 2019-12-11

基金资助

国家自然科学基金资助项目(51475289)

Degradation Modeling of Capacitors Based on Time Series Analysis

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-12-11

摘要

针对高温下电容器电容值下降的问题,基于差分自回归移动平均(ARIMA)模型及分数阶自回归移动平均(ARFIMA)模型,引入时间序列分析法预测电容值的退化轨迹.对于ARIMA模型,当电容器的退化过程服从Wiener分布时,利用过差分预判法(OPM)预判原时间序列的过差分阶数;根据单位根检验、自相关及偏自相关函数的计算结果确定经过一阶差分后的时间序列的平稳性.对于ARFIMA模型,利用重标极差法判定退化数据是否具有长期记忆性;通过最小准则及极大似然法估计模型阶数及其相关参数值.最后,通过残差检验验证OPM-ARIMA及ARFIMA模型在提取有效信息与准确预测两方面的能力,并进一步分析了这两种模型的可行性与有效性.

本文引用格式

张田,潘尔顺 . 基于时间序列分析的电容器退化模型[J]. 上海交通大学学报, 2019 , 53(11) : 1316 -1325 . DOI: 10.16183/j.cnki.jsjtu.2019.11.007

Abstract

For the problem of predicting the capacity degradation of capacitors at elevated temperatures, based on the auto-regressive integrated moving average (ARIMA) model and the auto-regressive fractionally integrated moving average (ARFIMA) model, time series analysis methods are introduced to predict the degradation path of capacity. For the ARIMA model, when the degradation process of the capacitors obeys Wiener distribution, the over-differential prediction method (OPM) can be used to predict the difference order of the original time series that cause over-difference. According to the calculation results from unit root test, auto-correlation function and partial auto-correlation function, it will be verified that whether the time series can become stationary through the first order difference. For the ARFIMA model, the re-scaled range analysis is used to determine whether the degradation data has long-term memory. The orders and related parametric estimated values are obtained by using minimum information criterion and maximum likelihood estimation. Finally, the residual test is used to verify the ability of the OPM-ARIMA model and the ARFIMA model for extracting valuable information and accurate prediction. Furthermore, the feasibility and effectiveness of two models are also analyzed.

参考文献

[1]BOX G E P, JENKINS G M, REINSEL G C, et al. Time series analysis: forecasting and control[M]. 5th ed. Canada: John Wiley & Sons, 2015: 37-58. [2]黄运来, 张国龙, 邓陈, 等. 基于ARMA模型的加速退化试验可靠性评估[J]. 中国测试, 2014, 40(4): 137-140. HUANG Yunlai, ZHANG Guolong, DENG Chen, et al. Accelerated degradation test reliability evaluation based on ARMA model[J]. China Measurement & Test, 2014, 40(4): 137-140. [3]POLITO F, PETRI A, PONTUALE G, et al. Ana-lysis of metal cutting acoustic emissions by time series models[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(9/10/11/12): 897-903. [4]高慧, 程宗毛. ARIMA模型在卫星的可靠性评估中的应用[J]. 杭州电子科技大学学报(自然科学版), 2016, 36(5): 77-81. GAO Hui, CHENG Zongmao. The application of ARIMA model of satellite reliability assessment[J]. Journal of Hangzhou Dianzi University(Natural Sciences), 2016, 36(5): 77-81. [5]WU J, DENG C, XIONG H, et al. Equipment performance degradation modeling for reliability prediction based on n-ARIMA model[J]. Advanced Materials Research, 2012, 544: 24-31. [6]KOSASIH B, CAESARENDRA W, TIEU K, et al. Degradation trend estimation and prognosis of large low speed slewing bearing lifetime[J]. Applied Mechanics and Materials, 2014, 493: 343-348. [7]金秀, 姚瑾, 庄新田. 基于分数阶差分的ARFIMA模型及预测效果研究[J]. 数理统计与管理, 2007, 26(5): 896-907. JIN Xiu, YAO Jin, ZHUANG Xintian. Study of ARFIMA model and its forecast performance based on fractional differencing[J]. Application of Statistics and Management, 2007, 26(5): 896-907. [8]PAPACHARALAMPOUS G, TYRALIS H, KOUTSOYIANNIS D. Predictability of monthly temperature and precipitation using automatic time series forecasting methods[J]. Acta Geophysica, 2018, 66(4): 807-831. [9]林雨, 孔刘柳, 刘培. 基于ARFIMA模型的黄金价格预测[J]. 南华大学学报(社会科学版), 2010, 11(1): 36-38. LIN Yu, KONG Liuliu, LIU Pei. The gold price forecasts based on the ARFIMA model[J]. Journal of University of South China (Social Science Edition), 2010, 11(1): 36-38. [10]BHARDWAJ G, SWANSON N R. An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series[J]. Journal of Econometrics, 2006, 131(1/2): 539-578. [11]冯春山, 吴家春, 蒋馥. 石油价格的ARFIMA模型预测研究[J]. 上海理工大学学报, 2005, 27(6): 539-542. FENG Chunshan, WU Jiachun, JIANG Fu. Forecasting the oil price by ARFIMA model[J]. Journal of University of Shanghai for Science and Technology, 2005, 27(6): 539-542. [12]DRRE A, FRIED R, LIBOSCHIK T. Robust estimation of (partial) autocorrelation[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2015, 7(3): 205-222. [13]BREWER M J, BUTLER A, COOKSLEY S L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity[J]. Methods in Ecology and Evolution, 2016, 7(6): 679-692. [14]LACHKAR C, KADI M, KOUADIO J P, et al. Failure analysis of aluminum electrolytic capacitors based on electrical and physicochemical characterizations[C]//2007 IEEE International Reliability Physics Symposium. Monterey, CA, USA: IEEE, 2017: 1-7. [15]管河山, 周丹. 平稳性检验方法的有效性研究[J]. 南华大学学报(社会科学版), 2016, 17(1): 63-68. GUAN Heshan, ZHOU Dan. Research on the validity of stationary testing methods[J]. Journal of University of South China (Social Science Edition), 2016, 17(1): 63-68.
文章导航

/