学报(中文)

GPS/INS延时估计与基于残差重构的延时补偿算法

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
付廷强(1992-),男,山东省临沂市人,硕士生,主要从事智能车辆多传感融合定位技术的研究.

网络出版日期: 2019-11-01

基金资助

国家重点研发计划(2017YFB0102503),国家自然科学基金(51605285)资助项目

GPS/INS Delay Estimation and Delay Compensation Based on Residual Reconstruction

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-11-01

摘要

传感器采样延时是多传感器信息融合过程中面临的一个重要问题,全球定位系统/惯性导航系统(GPS/INS)的组合导航系统是智能汽车常用定位方式,但常面对GPS采样延时的问题, 因而会造成对INS误差状态的错误估计,影响定位定速的精度.本文针对该问题,在传统的GPS/INS松耦合组合导航模型的基础上提出一种延时估计和补偿的算法.首先建立延时估计模型,估计时间同步误差,然后构建残差传播方程,利用残差重构的方式进行延时补偿,实现基于软件的时间同步.根据试验中对速度、位置误差及均方根误差的分析,改进的滤波算法有效地降低了GPS采样延时引入的误差,提高了定位和定速的精度.

本文引用格式

付廷强,马太原,王亚飞,殷承良 . GPS/INS延时估计与基于残差重构的延时补偿算法[J]. 上海交通大学学报, 2019 , 53(10) : 1210 -1217 . DOI: 10.16183/j.cnki.jsjtu.2019.10.010

Abstract

Time-delay is an important issue in multi sensor data fusion. As a common positioning method of an intelligent vehicle, global positioning system/inertial navigation system (GPS/INS) always suffers from an internal time-delay which can cause an error estimation of the INS error state. Based on the traditional loosely coupled integrated navigation system, this paper proposed an algorithm for delay estimation and compensation. Firstly, the delay estimation model was formulated to estimate the time synchronization error. Then, the residual propagation equation was constructed, and the delay compensation was carried out by means of residual reconstruction. The time synchronization was implemented in a software-based scheme. According to the analysis of errors and root mean square errors of velocity and position in the experiment, the improved filtering algorithm was able to effectively reduce the error caused by GPS sampling delay and improve positioning and velocity measurement accuracy.

参考文献

[1]MUR-ARTAL R, MONTIEL J M M, TARDS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2017, 31(5): 1147-1163.
[2]闵海根, 赵祥模, 徐志刚, 等. 基于稳健特征点的立体视觉测程法[J]. 上海交通大学学报, 2017, 51(7): 870-877.
MIN Haigen, ZHAO Xiangmo, XU Zhigang, et al. Stereo visual odometry based on robust features[J]. Journal of Shanghai Jiao Tong University, 2017, 51(7): 870-877.
[3]SONG J H, JEE G I. Performance enhancement of land vehicle positioning using multiple GPS receivers in an urban area[J]. Sensors, 2016, 16(10): 1688.
[4]黄志勇, 赵冬青, 张爽娜, 等. 辅助BDS接收机在城市峡谷环境中的定位算法研究[C]//第六届中国卫星导航学术年会. 西安: 中国卫星导航系统管理办公室学术交流中心, 2015: 1-7.
HUANG Zhiyong, ZHAO Dongqing, ZHANG Shuangna, et al. Research on assisted-BDS receiver positioning algorithm in urban canyons[C]//China Satellite Navigation Conference. Xi’an: China Sate-llite Navigation System Management Office Academic Exchange Center, 2015: 1-7.
[5]AFTATAH M, LAHRECH A, ABOUNADA A. Fusion of GPS/INS/Odometer measurements for land vehicle navigation with GPS outage[C]//International Conference on Cloud Computing Technologies and Applications. Marrakech, Morocco: IEEE, 2017: 48-55.
[6]XUE J R, WANG D, DU S Y, et al. A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 122-138.
[7]BLANCO-ClARACO J L, MORENO-DUENAS F A, GONZALEZ-JIMENEZ J. The Málaga urban dataset: High-rate stereo and lidars in a realistic urban scenario[J]. International Journal of Robotics Research, 2014, 33(2): 207-214.
[8]HSIAO F H, PAN S T. Robust Kalman filter synthesis for uncertain multiple time-delay stochastic systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1996, 118(4): 803-808.
[9]ITO K, NGUYEN B M, WANG Y F, et al. Fast and accurate vision-based positioning control employing multi-rate Kalman filter[C]//Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE. Vienna, Austria: IEEE, 2014: 6466-6471.
[10]WANG Y F, NGUYEN B M, FUJIMOTO H, et al. Multirate estimation and control of body slip angle for electric vehicles based on onboard vision system[J]. IEEE Transactions on Industrial Electronics, 2013, 61(2): 1133-1143.
[11]HANSEN J M, FOSSEN T I, JOHANSEN T A. Nonlinear observer design for GNSS-aided inertial navigation systems with time-delayed GNSS measurements[J]. Control Engineering Practice, 2017, 60: 39-50.
[12]PETOVELLO M G, CANNON M E, LACHAPELLE G, et al. Development and testing of a real-time GPS/INS reference system for autonomous automobile navigation[C]//Proceedings of ION GPS 2001, Salt Lake City, USA: ION, 2001: 2634-2641.
[13]LEE H K, LEE J G, JEE G I. Calibration of mea-surement delay in global positioning system/strapdown inertial navigation system[J]. Journal of Gui-dance, Control, and Dynamics, 2002, 25(2): 240-247.
[14]SKOG I, HNDEL P. Time synchronization errors in loosely coupled GPS-aided inertial navigation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1014-1023.
[15]杜瑾, 李杰, 罗丹瑶, 等. 高动态GPS/INS组合导航中时间延迟软硬件补偿算法研究[J]. 传感技术学报, 2016, 29(12): 1858-1863.
DU Jin, LI Jie, LUO Danyao, et al. Research on hardware and software compensation algorithm of time delay in high dynamic GPS/INS integrated navigation system[J]. Chinese Journal of Sensors and Actuators, 2016, 29(12): 1858-1863.
[16]FALCO G, EINICKE G A, MALOS J T, et al. Performance analysis of constrained loosely coupled GPS/INS integration solutions[J]. Sensors, 2012, 12(11): 15983-16007.
[17]BLANCO J L, MORENO F A, GONZALEZ J. A collection of outdoor robotic datasets with centimeter-accuracy ground truth[J]. Autonomous Robots, 2009, 27(4): 327.
文章导航

/