学报(中文)

微型肠道机器人扩张机构与能量接收线圈的设计与实验

展开
  • 上海交通大学 电子信息与电气工程学院, 上海 200240
蒲鹏先(1994-),男,贵州省遵义市人,硕士生,主要研究方向为胃肠道机器人无线能量传输.

网络出版日期: 2019-11-01

基金资助

国家自然科学基金(61673271, 81601631),中国博士后基金(2016M601587)资助项目

Design and Experiment of Expanding Mechanism and Power Receiving Coil for Micro Intestinal Robot

Expand
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-11-01

摘要

研究并设计了一种新型扩张方式的能在肠道中运动和驻留的微型肠道机器人.该肠道机器人的扩张机构采用阿基米德螺线腿的方式进行扩张,扩张直径可达32mm,变径比达到 2.13.设计减速比为489的减速器,保证较大的输出转矩.对扩张机构的扩张臂进行力学分析,并通过实验测试了扩张机构的扩张力.进而,对能量接收线圈进行建模分析.结果表明:扩张机构扩张力的实验测试值与理论分析的整体趋势基本一致,最小扩张力为 1.5N,满足肠道扩张力的需求;优化线圈磁芯厚度、绕组层数以及绞线规格可以提高无线供能系统性能;当发射线圈驱动电流为 1.4A时,该接收线圈相应的传输功率为812mW,能量传输效率为 8.3%,能满足肠道机器人的功率要求.

本文引用格式

蒲鹏先,颜国正,王志武,韩玎,柯全,汪炜,李达伟 . 微型肠道机器人扩张机构与能量接收线圈的设计与实验[J]. 上海交通大学学报, 2019 , 53(10) : 1143 -1150 . DOI: 10.16183/j.cnki.jsjtu.2019.10.001

Abstract

A new type expanding mechanism for micro intestinal robot is designed to move and anchor in the intestinal tract. The mechanism is expanded by Archimedes spiral legs whose maximum expanding diameter reaches to 32mm, and the variable diameter ratio is 2.13. The reduction ratio of the reducer is up to 489 to ensure large output torque. The dynamic characteristics of the expanding arm are analyzed, and the expanding force is tested through experiments. Then, the power receiving coil is modeled and analyzed. The results show that the overall trends of the experimental test value of the expanding force and the theoretical analysis are basically the same, and the minimum expanding force is 1.5N, which satisfies the demand of intestinal expansion. The performance of the wireless power transmission can be improved by optimizing the thickness of the coil core, the winding layer and the specification of the strand wire. When the driving current of the transmitting coil is 1.4A, the corresponding transmission power of the receiving coil is 812mW and the energy transfer efficiency is 8.3%, which can satisfy the power requirements of the intestinal robot.

参考文献

[1]国家卫生和计划生育委员会. 中国卫生和计划生育统计年鉴[M]. 北京: 中国协和医科大学出版社, 2016. National Health and Family Planning Commission. China’s statistical yearbook on health and family planning[M]. Beijing: Peking Union Medical College Press, 2016.

[2]MERON G D. The development of the swallowable video capsule (M2A)[J]. Gastrointestinal Endoscopy, 2000, 52(6): 817-819.

[3]IDDAN G, MERON G, GLUKHOVSKY A, et al. Wireless capsule endoscope[J]. Nature, 2000, 405: 417-418.

[4]GHEORGHE C, IACOB R, BANCILA I. Olympus capsule endoscopy for small bowel examination[J]. Journal of Gastrointestinal and Liver Diseases, 2017, 16(3): 309-313.

[5]LI C, ZHANG B, CHEN C, et al. OMOM capsule endoscopy in diagnosis of small bowel disease[J]. Journal of Zhejiang University SCIENCE B, 2008, 9(11): 857-862.

[6]BANG S, PARK J Y, JEONG S, et al. First clinical trial of the "MiRo" capsule endoscope by using a novel transmission technology: Electric-field propagation[J]. Gastrointestinal Endoscopy, 2009, 69(2): 253-259.

[7]石煜, 颜国正, 朱柄全.胶囊内窥镜便携式无线能量发射系统[J].光学精密工程, 2014, 22(1): 132-137. SHI Yu, YAN Guozheng, ZHU Bingquan, et al. Portable wireless power transmitting system for video capsule endoscopes [J]. Optics and Precision Engineering, 2014, 22(1): 132-137.

[8]刘修泉, 李艳红, 刘畅, 等. 胶囊内窥镜磁定位算法改进及实验研究[J]. 测控技术, 2017, 36(8): 150-154.

LIU Xiuquan, LI Yanhong, LIU Chang, et al. Improvement and experimental research on magnetic localization algorithm of capsule endoscopy[J]. Measurement & Control Technology, 2017, 36(8): 150-154.

[9]贺术, 颜国正, 柯全, 等. 肠道驻留机构的设计和实验[J]. 光学精密工程, 2015, 23(1): 102-109.

HE Shu, YAN Guozheng, KE Quan, et al. Design and experiment of an intestinal anchoring mechanism[J]. Optics Precision Engineering, 2015, 23(1): 102-109.

[10]GAO J Y, YAN G Z. Locomotion analysis of an inchworm-like capsule robot in the intestinal tract[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(2): 300-310.

[11]GAO J Y, YAN G Z, WANG Z W, et al. A capsule robot powered by wireless power transmission: Design of its receiving coil[J]. Sensors and Actuators A: Physical, 2015, 234: 133-142.

[12]PARK H J, KIM D, KIM B. A robotic colonoscope with long stroke and reliable leg clamping[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(8): 1461-1466.

[13]CHEN W W, YAN G Z, HE S, et al. Wireless powered capsule endoscoy for colon diagnosis and treatment[J]. Physiological Measurement, 2013, 34(11): 1545-1561.

[14]汪玮, 颜国正, 王志武, 等. 肠道机器人扩张机构设计与优化[J]. 光学精密工程, 2017, 25(7): 1815-1824. WANG Wei, YAN Guozheng, WANG Zhiwu, et al. Design and optimization of expanding mechanism of intestinal robot[J]. Optics Precision Engineering, 2017, 25(7): 1815-1824.

[15]杨凯, 颜国正, 高晋阳, 等. 胶囊机器人无线能量传输系统设计[J]. 北京生物医学工程, 2016, 35(5): 510-515.

YANG Kai, YAN Guozheng, GAO Jinyang, et al. Design of wireless power supply system for robotic capsule[J]. Beijing Biomedical Engineering, 2016, 35(5): 510-515.

[16]LIU G, YAN G Z, XU W M, et al. Dual-head wireless powered video capsule based on new type of receiving coils[J]. Journal of Medical Engineering & Technology, 2015, 39(4): 246-252.

[17]CHEN W W, YAN G Z, WANG Z W, et al. A wireless capsule robot with spiral legs for human intestine[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(2): 147-161.

文章导航

/