局部精细化网格会导致结构有限元动力学分析的计算时间大幅增加.为了提高计算效率,结合域分解法与子循环方法,提出一种基于多重节点的结构动力学显式异步长并行计算方法.该方法采用节点分割将模型划分为若干子分区,子分区采用显式Newmark时间积分格式并根据分区单元特性选用时间步长;相邻分区通过多重节点构成耦合区域,小步长分区子循环过程中不涉及边界数据的插值过程.“天河二号”超算平台上的算列表明:采用显式异步长并行方法计算结构动力学问题,在提高计算效率的同时可以保持较高的计算精度.
The local refined mesh leads to a large increase of calculation time in the structural dynamic finite element analysis. In order to improve the calculation efficiency, an explicit asynchronous parallel computational method based on multiple overlapping nodes is proposed. The procedure combines domain decomposition with subcycling method. The whole structure is divided into several subdomains by node partition method and the integral step size is selected according to the internal mesh sizes of the subdomain. An explicit Newmark time integral scheme is adopted in the subdomain. Multiple overlapping nodes between different subdomains constitute the coupling region without the interpolation process in the subcycling process. Simulation results of two cases implemented on Tianhe 2 supercomputer platform show that the proposed method can improve the computational efficiency with a high computational accuracy.
[1]王小庆, 金先龙, 曹源. 大规模输水隧道水锤效应三维数值模拟[J]. 上海交通大学学报, 2016, 50(1): 98-102.
WANG Xiaoqing, JIN Xianlong, CAO Yuan. Three-dimensional simulation of water hammer of large-scale water conveyance tunnel[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1): 98-102.
[2]张伟伟, 金先龙. 统一格式的显式与隐式任意混合异步算法[J].力学学报, 2013, 46(3): 436-446.
ZHANG Weiwei, JIN Xianlong. An arbitrarily mixed explicit-implicit asynchronous integration algorithm based on uniform discretization format[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 46(3): 436-446.
[3]GHANEM A, TORKHANI M, MAHJOUBI N, et al. Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structu-ral transient dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 292-308.
[4]张友良, 冯夏庭, 茹忠亮. 基于区域分解算法的岩土大规模高性能并行有限元系统研究[J]. 岩石力学与工程学报, 2004, 23(21): 3636-3641.
ZHANG Youliang, FENG Xiating, RU Zhongliang. Large-scale high performance parallel finite element system based on domain decomposition method in geomechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3636-3641.
[5]FARHAT C, ROUX F X. A method of finite element tearing and interconnecting and its parallel solution algorithm[J]. International Journal for Numerical Methods in Engineering, 1991, 32(6): 1205-1227.
[6]刘铖, 叶子晟, 胡海岩. 基于区域分解的柔性多体系统高效并行算法[J]. 中国科学: 物理学 力学 天文学, 2017, 47(10): 104603.
LIU Cheng, YE Zisheng, HU Haiyan. An efficient parallel algorithm for flexible multibody systems based on domain decomposition method[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(10): 104603.
[7]KOZUBEK T, VONDRAK V, MENSIK M, et al. Total FETI domain decomposition method and its massively parallel implementation[J]. Advances in Engineering Software, 2013, 60/61: 14-22.
[8]SMOLINSKI P. An explicit multi-time step integration method for second order equations[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(1): 25-34.
[9]BELYSCHKO T, LU Y Y. Explicit multi-time step integration for first and second order finite element semidiscretizations[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 108(3/4): 353-383.
[10]PRAKASH A, TACIROGLU E, HJELMSTAD K D. Computationally efficient multi-time-step method for partitioned time integration of highly nonlinear structural dynamics[J]. Computers and Structures, 2014, 133: 51-63.
[11]刘占生, 张云峰. 非线性壁板颤振计算的子循环预测校正方法研究[J]. 航空动力学报, 2007, 22(5): 761-767.
LIU Zhansheng, ZHANG Yunfeng. Nonlinear panel flutter computation with subcycling and predict correct scheme[J]. Journal of Aerospace Power, 2007, 22(5): 761-767.
[12]高双武, 强洪夫, 周伟, 等. 基于子循环-预测校正的三维SRM点火瞬态流固耦合数值模拟[J]. 计算力学学报, 2011, 28(Sup.): 84-89.
GAO Shuangwu, QIANG Hongfu, ZHOU Wei, et al. Fluid-structure interaction numerical simulation of 3D SRM during ignition with subcycling based predict-correct scheme[J]. Chinese Journal of Computational Mechanics, 2011, 28(Sup.): 84-89.
[13]KARIMIS S, NAKSHATRALA K B. On multi-time-step monolithic coupling algorithms for elastodynamics[J]. Journal of Computational Physics, 2014, 273: 671-705.
[14]SUBBER W, MATOUS K. Asynchronous space-time domain decomposition method with localized uncertainty quantification[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 369-394.
[15]HUGHES T J R. The finite element method: Linear static and dynamic finite element analysis[M]. New Jersey, USA: Prentice Hall, 2012.