学报(中文)

近水面低速工况下的潜航器深度复合控制

展开
  • 上海交通大学 船舶海洋与建筑工程学院;高新船舶与深海开发装备协同创新中心, 上海 200240
庄鹏(1993-),男,江苏省溧阳市人,硕士生,研究方向为潜航器运动控制.

网络出版日期: 2019-10-11

Depth Composite Control of Low Speed Underwater Vehicle Near Surface

Expand
  • School of Naval Architecture, Ocean and Civil Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-10-11

摘要

由于低速航行时舵效较低,潜航器水平控制面产生的升力不足以抵消其在近水面时所受的波吸力扰动,所以引入压载水机构改进深度控制系统的性能,从而使其具有过驱动特征.本文提出了适用于这种过驱动控制系统的复合控制策略,其中前馈控制器输入为由扰动观测器估计的不平衡力,输出为压载水质量;反馈控制器输入为深度偏差,输出为水平舵偏转角.水下压载试验结果表明,扰动观测器可以精确地估计潜航器所受的不平衡力.水池自航试验结果表明,基于复合控制策略的潜航器深度控制系统具有较好的控制性能.

本文引用格式

庄鹏,冯正平,毕安元,郑天海,潘万钧,赵硕 . 近水面低速工况下的潜航器深度复合控制[J]. 上海交通大学学报, 2019 , 53(9) : 1084 -1090 . DOI: 10.16183/j.cnki.jsjtu.2019.09.010

Abstract

Due to low effectiveness of both bow and stern planes at low speeds, the near-surface suction force experienced by an underwater vehicle can hardly be counteracted by lifting forces generated by the control surfaces. To improve the performance of depth control system, therefore, a variable water ballast mechanism is introduced and thus leads to an over-actuated characteristic. A composite control scheme is proposed for such an over-actuated control system. The input of the feedforward controller is the disturbance force, which is estimated by the disturbance observer, and the output of the feedforward controller is the mass of ballast water. Besides, the input of the feedback controller is the depth error and the output of the controller is the deflection angle of control surfaces. The results of underwater tests show that the disturbance observer can accurately estimate the unbalanced force on the underwater vehicle, and the self-propelled water tank tests also show that depth control system of underwater vehicle based on composite control strategy has good control performance.

参考文献

[1]LICEAGA-CASTRO  E,  LICEAGA-CASTRO J, UGALDE-LOO C E, et al. Efficient multivariable submarine depth-control system design [J]. Ocean Engineering, 2008, 35(17/18): 1747-1758.
[2]RENILSON M. Submarine hydrodynamics [M]. New York: Springer, 2015.
[3]PESSOA J, FONSECA N. Second-order low-frequency drift motions of a floating body calculated by different approximation methods [J]. Journal of Marine Science and Technology, 2015, 20(2): 357-372.
[4]PASKYABI M B, FER I. The influence of surface gravity waves on the injection of turbulence in the upper ocean [J]. Nonlinear Processes in Geophysics, 2014, 21(3): 713-733.
[5]DING X M, LUAN L B, ZHENG C J, et al. Influence of the second-order effect of axial load on lateral dynamic response of a pipe pile in saturated soil layer [J]. Soil Dynamics and Earthquake Engineering, 2017, 103: 86-94.
[6]FONT R, GARCIA-PELAEZ J. On a submarine hovering system based on blowing and venting of ballast tanks [J]. Ocean Engineering, 2013, 72: 441-447.
[7]ZHOU J Q, CANOVA M, SERRANI A. Non-intrusive reference governors for over-actuated linear systems [J]. IEEE Transactions on Automatic Control, 2017, 62(9): 4734-4740.
[8]TANGIRALA S, DZIELSKI J. A variable buoyancy control system for a large AUV [J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 762-771.
[9]CHEN Y, WANG G, XU G, et al. Hovering control of submarine based on L1 adaptive theory via ballast tanks [J]. International Journal of Advanced Robotic Systems, 2017, 14(4): 1-10.
[10]王毓顺. 潜艇近水面空间运动联合控制系统研究 [D].哈尔滨: 哈尔滨工程大学, 2001.
WANG Yushun. Research on joint control system design for near-surface submarine [D]. Harbin: Harbin Engineering University, 2001.
[11]CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods—An overview [J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095.
[12]YANG J, LI S H, YU X H. Sliding-mode control for systems with mismatched uncertainties via a distur-bance observer [J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 160-169.
[13]FOSSEN T I. Guidance and control of ocean vehicles [M]. New York: John Wiley & Sons, 1994.
[14]CHEN W H. Disturbance observer based control for nonlinear systems [J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 706-710.
文章导航

/