学报(中文)

双柱悬索拉线塔的精细化模拟及模型分析

展开
  • 1. 重庆大学 土木工程学院, 重庆 400045; 2. 重庆科技学院 建筑工程学院,重庆 401331; 3. 华北电力设计院工程有限公司, 北京 100120; 4. 国网新疆电力公司电力科学研究院, 乌鲁木齐 830011
聂小春(1990-),男,四川省遂宁市人,博士生,主要研究方向为输电线路抗风.

网络出版日期: 2019-10-11

基金资助

国家自然科学基金资助项目(51478069,51778097)

The Refined Simulation and Model Analysis of the Suspension Cable Guyed Tower

Expand
  • 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; 3. North China Power Engineering Co., Ltd., Beijing 100120, China; 4. Xinjiang Electric Power Research Institute, State Grid Corporation of China, Urumqi 830011, China

Online published: 2019-10-11

摘要

基于有限元软件ANSYS,建立了双柱悬索拉线塔的壳单元精细化有限元模型和常规梁单元模型,在试验工况下模拟拉线塔主、斜材杆件应变随荷载加载等级的变化,并将两种模型的模拟结果与试验结果对比,同时也比较了两种有限元模型对结构整体响应的影响.结果表明:壳单元模型对拉线塔主、斜材应变的模拟结果均与试验结果吻合较好,梁单元模型对主材应变的模拟结果与试验结果吻合较好,对斜材应变的模拟结果与试验结果误差较大;上述两种有限元模型对双柱悬索拉线塔的宏观响应指标的影响较小,对杆件内力的影响较大.

本文引用格式

聂小春,晏致涛,施菁华,游溢 . 双柱悬索拉线塔的精细化模拟及模型分析[J]. 上海交通大学学报, 2019 , 53(9) : 1066 -1073 . DOI: 10.16183/j.cnki.jsjtu.2019.09.008

Abstract

Based on the finite element software ANSYS, a beam element model and a refined shell element model of the suspension cable guyed tower was established. The variation of the strain of the members with the loading level are calculated by the above-mentioned two finite element models, and the calculation results of the two models are compared with the full-scale test results. At the same time, the influence of the above-mentioned two models on the overall response of the structure are also compared. The results show that the calculation results of the refined shell element model on the strain of the main and oblique members are in good agreement with the full-scale test results. The calculation results of the beam element model on the strain of the main members also agree well with the full-scale test results. However, there is a relatively large calculation error of oblique members’ strain in beam element model. The above-mentioned two finite element models have little effect on the overall response of the suspension cable guyed tower, but the effect on internal force of the members is relatively large.

参考文献

[1]刘鸣, 付华平, 李永诰, 等.不同有限元模型对钢管角钢混合塔动力特性分析的影响[J]. 特种结构, 2014, 31(6): 114-118.
LIU Ming, FU Huaping, LI Yonghao, et al. Influence of different finite element models on the dynamic characteristics analysis of steel pipe angle steel mixed tower[J]. Special Structure, 2014, 31(6): 114-118.
[2]RAO N P, KALYANARAMAN V. Nonlinear behaviour of lattice panel of angle towers[J]. Journal of Constructional Steel Research, 2001, 57(12): 1337-1357.
[3]杜运兴, 卢心龙. 输电塔线体系风致覆冰脱落动力响应的研究[J]. 湖南大学学报(自然科学版), 2015, 42(11): 88-93.
DU Yunxing, LU Xinlong. Research on dynamic response of wind-induced ice-shedding of transmission-line system[J]. Journal of Hunan University (Natural Science), 2015, 42(11): 88-93.
[4]赵桂峰, 李杰, 谢强, 等. 高压输电塔线耦联体系风振响应有限元分析与现场实测对比研究[J]. 自然灾害学报, 2014, 23(1): 65-74.
ZHAO Guifeng, LI Jie, XIE Qiang, et al. Finite element analysis and field measurement of wind-induced vibrationresponse of high-voltage transmission tower-line coupling system[J]. Journal of Natural Disasters, 2014, 23(1): 65-74.
[5]邓洪洲, 黄斌, 洪洲澈, 等.窄基输电钢管塔塔腿主材次应力研究[J]. 建筑结构学报, 2016, 37(12): 161-170.
DENG Hongzhou, HUANG Bin, HONG Zhouche, et al. Study on secondary stresses in main members of narrow base tubular transmission tower legs [J]. Journal of Building Structure, 2016, 37(12): 161-170.
[6]ELTALY B, SAKA A, KANDIL K. FE simulation of transmission tower[J]. Advances in Civil Engineering, 2014, 2014: 1-13.
[7]赵楠.特高压输电塔半刚性节点受力性能及结构非线性分析研究[D]. 重庆: 重庆大学, 2014.
ZHAO Nan. Study on load-bearing performance of semi-rigid joints and structure nonlinear analysis of UHV transmission tower[D]. Chongqing: Chongqing University, 2014.
[8]钱程, 沈国辉, 郭勇, 等.节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
QIAN Cheng, SHEN Guohui, GUO Yong, et al. Influence of semi-rigid connections on wind-induced response of transmission towers[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(6): 1082-1089.
[9]王璋奇, 杨文刚, 张凯, 等.特高压单柱拉线塔受力特性及拉线初始预应力对其影响的研究[J]. 中国电机工程学报, 2014, 34(9): 1498-1506.
WANG Zhangqi, YANG Wengang, ZHANG Kai, et al. The influence of initial guy cable prestress on UHV transmission line single mast guyed tower’s mechanical properties [J]. Proceedings of the CSEE, 2014, 34(9): 1498-1506.
[10]郭峰, 李晨, 施菁华, 等.直流输电线路双柱悬索拉线塔设计[J]. 电力建设, 2012, 33(5): 78-81.
GUO Feng, LI Chen, SHI Jinghua, et al. Design for double column suspended guyed tower in DC transmission lines [J]. Electric Power Construction, 2012, 33(5): 78-81.
[11]程睿, 黄宗明, 孙必祥, 等.单角钢连接节点板受压性能试验研究与承载力计算方法[J]. 建筑结构学报, 2009, 30(4): 61-68.
CHENG Rui, HUANG Zongming, SUN Bixiang, et al. Experimental study and design of compressive behavior of Gusset plates connected with single angle members [J]. Journal of Building Structures, 2009, 30(4): 61-68.
[12]谢强, 孙力.覆冰荷载作用下500kV输电杆塔结构破坏机理试验分析[J]. 高电压技术, 2010, 36(12): 3090-3095.
XIE Qiang, SUN Li. Experimental analysis on failure mechanism of 500kV transmission tower under ice loading[J]. High Voltage Engineering, 2010, 36(12): 3090-3095.
[13]刘海锋, 杨靖波, 韩军科, 等.节点刚域对钢管输电塔主材受力的影响[J]. 特种结构, 2012, 29(4): 29-32.
LIU Haifeng, YANG Jingbo, HAN Junke, et al. Influence of joint rigid zone on mechanical behaviors of main members in steel tabular tower [J]. Special Structures, 2012, 29(4): 29-32.
[14]刘春城, 孙铭, 徐强胜.输电钢管塔多尺度数值模拟研究[J]. 华东电力, 2014, 42(2): 380-383.
LIU Chuncheng, SUN Ming, XU Qiangsheng. Multi-scale numerical simulation of transmission steel tube tower[J]. East China Electric Power, 2014, 42(2): 380-383.
[15]王风阳.输电塔结构多尺度模拟方法及倒塌分析[D].哈尔滨: 哈尔滨工业大学, 2015.
WANG Fengyang. Multi-scale simulation method and collapse analysis of transmission tower structure[D]. Harbin: Harbin Institute of Technology, 2015.
[16]聂小春. 特高压悬索拉线塔的力学模型及分析[D].重庆: 重庆大学, 2016.
NIE Xiaochun. The mechanical model and analysis of UHV suspension cable guyed tower [D]. Chong-qing: Chongqing University, 2016.
文章导航

/