学报(中文)

基于等压差充电时间的锂离子电池寿命预测

展开
  • 上海交通大学 海洋工程国家重点实验室, 上海 200240
刘健(1993-),男,山东省济南市人,硕士生,研究方向为锂离子电池寿命预测.

网络出版日期: 2019-10-11

基金资助

国家自然科学基金(51677119)资助项目

Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Time Interval of Equal Charging Voltage Difference

Expand
  • State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-10-11

摘要

针对锂离子电池寿命在线预测时直接测量困难及容量再生的现象,提出一种基于等压差充电时间和改进高斯过程回归模型的电池寿命预测方法.建立了具备不确定性表达能力的高斯过程回归模型,并采用组合核函数与粒子群算法进行了模型优化.在恒流充电过程中提取等压差充电时间参数,将其作为健康因子建立了广义线性回归模型,通过预测等压差充电时间进行电池容量估计与寿命预测,根据电池充放电循环数据进行实验验证.结果表明:基于等压差充电时间的高斯过程回归模型预测方法可以预测容量非线性退化轨迹,具备较高的锂离子电池寿命预测精度及在线预测能力.

本文引用格式

刘健,陈自强,黄德扬,郑昌文,周诗尧,姜余 . 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019 , 53(9) : 1058 -1065 . DOI: 10.16183/j.cnki.jsjtu.2019.09.007

Abstract

In order to solve the difficulty in measuring capacity directly and capacity regeneration during online remaining useful life (RUL) prediction for lithium-ion batteries, a new method is proposed based on time interval of equal charging voltage difference and optimized Gaussian process regression (GPR) model. Firstly, the GPR model with uncertainty expression is established and optimized by using combined kernel functions and particle swarm optimization. The time interval of equal charging voltage difference is extracted during the constant current charging process of lithium-ion batteries. The relationship between the time interval of equal charging voltage difference and capacity is analyzed by a generalized linear regression model. The time interval of equal charging voltage difference can act as a health indicator for RUL prediction of lithium-ion batteries. According to the data sets of charge/discharge tests of lithium-ion batteries, the verification experiments are carried out. The results show that the proposed method can predict nonlinear degradation of capacity well and have high prediction accuracy and online RUL prediction ability for lithium-ion batteries.

参考文献

[1]刘大同,  周建宝,  郭力萌, 等. 锂离子电池健康评估和寿命预测综述 [J]. 仪器仪表学报,  2015,  36(1): 1-16.
LIU Datong,  ZHOU Jianbao,  GUO Limeng,  et al. Survey on lithium-ion battery health assessment and cycle life estimation [J]. Chinese Journal of Scientific Instrument,  2015,  36(1): 1-16.
[2]罗伟林,  张立强,  吕超, 等. 锂离子电池寿命预测国外研究现状综述 [J]. 电源学报,  2013, 11(1): 140-144.
LUO Weilin,  ZHANG Liqiang,  LV Chao,  et al. Review on foreign status of life prediction of lithium-ion batteries [J]. Journal of Power Supply,  2013, 11(1): 140-144.
[3]CHAO L,  LAI Q,  GE T,  et al. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework [J]. Energy,  2017,  120: 975-984.
[4]HU X,  LI S,  PENG H. A comparative study of equivalent circuit models for Li-ion batteries [J]. Journal of Power Sources,  2012,  198: 359-367.
[5]胡晓松,  唐小林. 电动车辆锂离子动力电池建模方法综述 [J]. 机械工程学报,  2017,  53(16): 20-31.
HU Xiaosong,  TANG Xiaolin. Review of modeling techniques for lithium-ion traction batteries in electric vehicles [J]. Journal of Mechanical Engineering,  2017,  53(16):  20-31.
[6]SAHA B,  GOEBEL K,  POLL S,  et al. Prognostics methods for battery health monitoring using a Baye-sian framework [J]. IEEE Transactions on Instrumentation and Measurement,  2009,  58(2): 291-296.
[7]WU J,  ZHANG C B,  CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks [J]. Applied Energy,  2016,  173: 134-140.
[8]LIU D T,  ZHOU J B,  LIAO H T,  et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,  2015,  45(6): 915-928.
[9]ZHOU Y P,  HUANG M H,  CHEN Y P,  et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction [J]. Journal of Power Sources,  2016,  321: 1-10.
[10]LI J F,  WANG L X,  LYU C,  et al. A method of remaining capacity estimation for lithium-ion battery [J]. Advances in Mechanical Engineering,  2013,  5:  154831.
[11]HU X S,  JIANG J C,  CAO D P,  et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling [J]. IEEE Transactions on Industrial Electronics,  2016,  63(4): 2645-2656.
[12]何志昆,  刘光斌,  赵曦晶, 等. 高斯过程回归方法综述 [J]. 控制与决策,  2013, 28(8): 1121-1129.
HE Zhikun,  LIU Guangbin,  ZHAO Xijing,  et al. Overview of Gaussian process regression [J]. Control and Decision,  2013, 28(8): 1121-1129.
[13]李翔宇,  高宪文,  李琨, 等. 鱼群算法优化组合核函数GPR的油井动液面预测 [J]. 东北大学学报(自然科学版),  2017,  38(1): 11-15.
LI Xiangyu,  GAO Xianwen,  LI Kun,  et al. Prediction for dynamic fluid level of oil well based on GPR with AFSA optimized combined kernel function [J]. Journal of Northeastern University (Natural Science),  2017,  38(1): 11-15.
[14]徐冲,  刘保国,  刘开云, 等. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J]. 岩土力学,  2011,  32(6):  1669-1675.
XU Chong,  LIU Baoguo,  LIU Kaiyun,  et al. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR [J]. Rock and Soil Mechanics,  2011,  32(6): 1669-1675.
[15]LIU D T,  PANG J Y,  ZHOU J B,  et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression [J]. Microelectronics Reliability,  2013,  53(6): 832-839.
[16]宋云雪,  陈金. 基于广义线性回归模型的飞机维修单位风险管理研究[J]. 科技通报,  2016,  32(1): 215-219.
SONG Yunxue,  CHEN Jin. Research of aircraft main-tenance unit risk management based on the generalized linear regression model [J]. Bulletin of Science and Technology,  2016,  32(1): 215-219.
文章导航

/