基于电磁耦合原理,针对人造肛门括约肌系统,设计了一套无线供能系统.该系统主要包括无线能量发射端、接收端、整流模块、稳压模块和充电模块.研究了发射端的发射频率(40~120kHz)对传输功率的影响,进而优化了稳压模块,并比较了锂电池充电效果.结果表明:在一定发射频率范围内,无线供能传输效率随着发射频率的增大而升高;发射频率为120kHz时,传输效率可以达到 57.47%,接收功率为 1.12W;锂电池能快速充电,为人造肛门括约肌系统提供稳定能量保障.
Based on the principle of electromagnetic coupling, a set of wireless energy supply system was designed for the artificial anal sphincter system. The system contains five parts: wireless energy transmitter, wireless energy receiver, rectifier module, regulator module and charging module. This work focuses on the effect of transmitter launch angle frequency (40-120kHz) on the transmission power. We compare the charging effect and optimize the regulator module to meet the executing agency operating power requirements. The experiment results show that the transmission efficiency improves with the increase of the transmission frequency in a certain frequency range. When the transmission frequency is 120kHz, the transmission efficiency can reach 57.47%, the receiving power is 1.12W, and the lithium battery can be quickly charged, providing stable energy for the artificial anal sphincter system.
[1]HONG K D, SILVA G, WEXNER S D. What is the best option for failed sphincter repair [J]. Colorectal Disease, 2014, 16(4): 298-303.
[2]LAMBLIN G, BOUVIER P, DAMON H, et al. Long-term outcome after overlapping anterior anal sphincter repair for fecal incontinence [J]. International Journal of Colorectal Disease, 2014, 29(11): 1377-1383.
[3]FORTE M L, ANDRADE K E, LOWRY A C, et al. Systematic review of surgical treatments for fecal incontinence [J]. Diseases of the Colon & Rectum, 2016, 59(5): 443-469.
[4]LIN Y H, YANG H Y, HUNG S L, et al. Effects of pelvic floor muscle exercise on fecal incontinence in rectal cancer patients after stoma closure [J]. European Journal of Cancer Care, 2016, 25(3): 449-457.
[5]NORDENSTAM J, BOLLER A M, MELLGREN A. Sacral nerve stimulation in the treatment of bowel disorders [J]. Progress in Neurological Surgery, 2015, 29: 200-212.
[6]BOCHENSKA K, BOLLER A M. Fecal incontinence: Epidemiology, impact, and treatment [J]. Clinics in Colon and Rectal Surgery, 2016, 29(3): 264-270.
[7]AMAE S, WADA M, LUO Y, et al. Development of an implantable artificial anal sphincter by the use of the shape memory alloy [J]. Asaio Journal, 2000, 47(4): 346-350.
[8]LAAKSO I, SHIMAMOTO T, HIRATA A, et al. Applicability of quasistatic approximation for exposure assessment of wireless power transfer [C]//2014 International Symposium on Electromagnetic Compatibility. Tokyo: IEEE, 2014: 430-433.
[9]CHEN X L, UMENEI A E, BAARMAN D W, et al. Human exposure to close-range resonant wireless power transfer systems as a function of design parameters [J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1027-1034.
[10]FRIEDMANN J, GROEDL F, KENNEL R. A novel universal control scheme for transcutaneous energy transfer (TET) applications [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 296-305.
[11]KNECHT O, BOSSHARD R, KOLAR J W. High-efficiency transcutaneous energy transfer for implantable mechanical heart support systems [J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6221-6236.
[12]FU Y, HU L, RUAN X, et al. A transcutaneous energy transmission system for artificial heart adapting to changing impedance [J]. Artificial Organs, 2015, 39(4): 378-387.
[13]KNECHT O, KOLAR J W. Performance evaluation of series-compensated IPT systems for transcutaneous energy transfer [J]. IEEE Transactions on Power Electronics, 2019, 34(1): 438-451.
[14]JIN W T, YAN G Z, WU H, et al. Preliminary study of a novel puborectalis-like artificial anal sphincter[J]. Artificial Organs, 2017, 41(9): 845-851.
[15]克磊, 颜国正, 颜胜,等.植入式医疗设备经皮能量充电系统设计与实验[J].仪器仪表学报, 2013, 34(12): 2846-2853.
KE Lei, YAN Guozheng, YAN Sheng, et al. Design and experiment on transcutaneous energy charging system in implantable medical device [J]. Chinese Journal of Scientific Instrument, 2013, 34(12): 2846-2853.