学报(中文)

压缩性对涡环物理特征及其传播速度的影响规律

展开
  • 上海交通大学 航空航天学院, 上海 200240
林海燕(1987-),女,江苏省南通市人,博士生,主要从事超声速涡动力学研究.

网络出版日期: 2019-10-11

基金资助

国家自然科学基金重点项目(91441205)、国家自然科学基金青年科学基金项目(51606120)

The Compressible Effect on Characteristics and Translate Velocity of Vortex Ring

Expand
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-10-11

摘要

在3维可压缩流场中,涡环是最基本的涡结构.为了揭示压缩性对涡环物理特征的影响规律,基于有限体积法求解3维可压缩Navier-Stokes方程,研究激波管产生的轴对称可压缩涡环.可压缩涡环的可压缩性由局部马赫数与涡马赫数定量表征;可压缩涡环的形态特征分为3类,分别为亚声速特征、跨声速特征及超声速特征.在可压缩性的作用下,涡环的结构参数受到一定的影响:涡核内涡量的分布愈加偏离高斯分布,表现为涡量集中区域范围愈加狭窄;涡环半径随着可压缩性的增加逐渐增加;涡核半径先增加,在可压缩性更强且存在嵌入激波的情况下又略微有所减小;涡环的传播速度与可压缩性成正比,由涡马赫数计算得到的理论传播速度与计算结果基本一致,表明了传播速度理论公式同时适用于这3种特征的可压缩涡环.

本文引用格式

林海燕,向阳,张斌,刘洪 . 压缩性对涡环物理特征及其传播速度的影响规律[J]. 上海交通大学学报, 2019 , 53(9) : 1030 -1039 . DOI: 10.16183/j.cnki.jsjtu.2019.09.003

Abstract

Vortex ring is the fundamental structure in three dimensional fluid field. Three dimensional Navier-Stokes simulations are performed through finite volume method to reveal the compressible effect on axial symmetry vortex ring generated at the open end of a shock tube. Local Mach number and vortex Mach number can characterize the compressibility quantificationally. Compressibility vortex ring can be classified into three categories which correspond to subsonic, transonic and supersonic. The parameters related to vortex ring structure are also affected by compressibility. As the increase of compressibility, the vorticity profile in vortex core deviates from Gaussian distribution and the concentrated vorticity fields in the vortex core diminishes; the radius of vortex ring increase with the increasing compressibility; the radius of vortex core increase first then decrease slightly due to the embedded shock wave. The velocity of vortex ring is proportional to the compressibility. The theoretical velocity obtained from simulation agrees well with the calculated value obtained by vortex Mach number, which indicates that the formula is suitable to all three kinds of compressible vortex rings.

参考文献

[1]SHARIFF K, LEONARD A. Vortex rings[J]. Annual Review of Fluid Mechanics, 1992, 24: 235-279.
[2]SULLIVAN I S, NIEMELA J J, HERSHBERGER R E, et al. Dynamics of thin vortex rings[J]. Journal of Fluid Mechanics, 2008, 609: 319-347.
[3]XIANG Y, LIN H Y, ZHANG B, et al. Quantitative analysis of vortex added-mass and impulse generation during vortex ring formation based on elliptic Lagrangian coherent structures[J]. Experimental Thermal and Fluid Science, 2018, 94: 295-303.
[4]GHARIB M, RAMBOD E, SHARIFF K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics, 1998, 360: 121-140.
[5]XIANG Y, QIN S Y, LIU H. Patterns for efficient propulsion during the energy evolution of vortex rings[J]. European Journal of Mechanics B-Fluids, 2018, 71: 47-58.
[6]QIN S Y, LIU H, XIANG Y. On the formation modes in vortex interaction for multiple co-axial corotating vortex rings[J]. Physics of Fluids, 2018, 30(1): 011901.
[7]FERNNDEZ J J P, SESTERHENN J. Compressible starting jet: Pinch-off and vortex ring-trailing jet interaction[J]. Journal of Fluid Mechanics, 2017, 817: 560-589.
[8]RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions[J]. Annual Review of Fluid Mechanics, 2011, 43: 117-140.
[9]ELDER F K, DE HAAS N. Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube[J]. Journal of Applied Physics, 1952, 23(10): 1065-1069.
[10]ARAKERI J H, DAS D, KROTHAPALLI A, et al. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study[J]. Physics of Fluids, 2004, 16(4): 1008-1019.
[11]DORA C L, SARAVANAN D, KARUNAKAR K, et al. Characteristics of embedded-shock-free compressible vortex rings: A detailed study using PIV[J]. Advances in Mechanical Engineering, 2011, 3: 650871.
[12]BAIRD J P. Supersonic vortex rings[J]. Proceedings of the Royal Society of London Series A, 1987, 409(1836): 59-65.
[13]BROUILLETTE M, TARDIF J, GAUTHIER E. Experimental study of shock-generated vortex rings[C]//Shock Waves@Marseille IV. Berlin, Germany: Springer-Verlag, 1995: 361-366.
[14]BROUILLETTE M, HBERT C. Propagation and interaction of shock-generated vortices[J]. Fluid Dynamics Research, 1997, 21(3): 159-169.
[15]KONTIS K, AN R, EDWARDS J A. Compressible vortex-ring interaction studies with a number of generic body configurations[J]. AIAA Journal, 2006, 44(12): 2962-2978.
[16]THANGADURAI M, DAS D. Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring[J]. Experiments in Fluids, 2010, 49(6): 1247-1261.
[17]MURUGAN T, DE S, DORA C L, et al. Numerical simulation and PIV study of compressible vortex ring evolution[J]. Shock Waves, 2012, 22(1): 69-83.
[18]DORA C L, MURUGAN T, DE S, et al. Role of slipstream instability in formation of counter-rotating vortex rings ahead of a compressible vortex ring[J]. Journal of Fluid Mechanics, 2014, 753: 29-48.
[19]DABIRI J O, GHARIB M. Fluid entrainment by isolated vortex rings[J]. Journal of Fluid Mechanics, 2004, 511: 311-331.
[20]秦苏洋, 向阳, 刘洪. 活塞和圆盘涡环的运动学特征分析[J]. 上海交通大学学报, 2016, 50(2): 294-299.
QIN Suyang, XIANG Yang, LIU Hong. Comparative study of kinematics characteristics of vortex rings generated by piston and disc[J]. Journal of Shanghai Jiao Tong University, 2016, 50(2): 294-299.
[21]OLCAY A B, KRUEGER P S. Measurement of ambient fluid entrainment during laminar vortex ring formation[J]. Experiments in Fluids, 2008, 44(2): 235-247.
[22]SAFFMAN P G. Dynamics of vorticity[J]. Journal of Fluid Mechanics, 1981, 106: 49-58.
[23]MOORE D W. The effect of compressibility on the speed of propagation of a vortex ring[J]. Proceedings of the Royal Society of London Series A, 1985, 397(1812): 87-97.
[24]NORBURY J. A family of steady vortex rings[J]. Journal of Fluid Mechanics, 1973, 57(3): 417-431.
文章导航

/